药学学报, 2021, 56(2): 487-495
引用本文:
周冬艳, 姜晟, 关志宇, 朱卫丰, 钟凌云, 刘婧, 刘荣华. 蛋白冠对纳米粒体内循环的影响和应用研究进展[J]. 药学学报, 2021, 56(2): 487-495.
ZHOU Dong-yan, JIANG Cheng, GUAN Zhi-yu, ZHU Wei-feng, ZHONG Ling-yun, LIU Jing, LIU Rong-hua. Research advances in the effect and utilization of protein corona on the circulation of nanoparticles in vivo[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 487-495.

蛋白冠对纳米粒体内循环的影响和应用研究进展
周冬艳, 姜晟, 关志宇, 朱卫丰, 钟凌云, 刘婧, 刘荣华
江西中医药大学药学院, 江西 南昌 330004
摘要:
纳米粒在检测、治疗癌症以及各种疑难杂症方面具有较佳的适用性,但单核吞噬系统可严重缩短纳米粒的体内循环时间,降低药物疗效。纳米粒进入机体后在其表面形成的蛋白冠可改变其表面性质,干扰吞噬细胞的识别,从而影响其在体内的循环时间。本文概述了蛋白冠的一般组成和形成过程,总结了纳米粒物理化学性质如粒径、表面电荷、亲水性和表面材料对蛋白冠形成的影响。蛋白冠影响纳米粒体内循环,主要在于吸附的调理蛋白促进细胞吞噬。因此,本文还介绍了应用蛋白冠促进纳米粒体内长循环的方法,通过设计合适的理化性质、表面修饰和定向设计蛋白冠,减少蛋白质在纳米粒表面的吸附。以减少纳米粒在单核吞噬系统(主要是肝脏和脾脏的吞噬细胞)的清除,实现纳米粒在体内长循环的目标。
关键词:    蛋白冠      纳米粒      吞噬作用      长循环      理化性质      表面修饰     
Research advances in the effect and utilization of protein corona on the circulation of nanoparticles in vivo
ZHOU Dong-yan, JIANG Cheng, GUAN Zhi-yu, ZHU Wei-feng, ZHONG Ling-yun, LIU Jing, LIU Rong-hua
School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
Abstract:
Nanoparticles have better applicability in the detection, treatment of cancer and various difficult diseases, but mononuclear phagocytosis system can seriously shorten the time of nanoparticles in vivo circulation, reduce the drug efficacy. The protein crown formed on the surface of the nanoparticle after entering the body can change its surface properties, interfere with the recognition of phagocytes, and thus affect its circulation time in vivo. This article outlines the general composition and formation process of protein crowns. It also summarizes the influence of the physical and chemical properties of nanoparticles, such as particle size, surface charge, hydrophilicity and surface materials on the formation of protein crowns. The protein crown affects the circulation of nanoparticles in vivo, mainly because the adsorbed opsonic protein promotes cell phagocytosis. Therefore, we also introduce the method of using protein crowns to promote the long circulation of nanoparticles in vivo. By designing appropriate physical and chemical properties, surface modification, and directed design of protein crowns, the adsorption of proteins on the surface of nanoparticles can be reduced. Therefore, it can reduce the clearance of nanoparticles in the mononuclear phagocytic system (mainly the phagocytes of the liver and spleen), and achieve the goal of long circulation of nanoparticles in the body.
Key words:    protein corona    nanoparticle    phagocytosis    long circulation    physical and chemical property    surface modification   
收稿日期: 2020-08-12
DOI: 10.16438/j.0513-4870.2020-1323
基金项目: 国家重点研发计划中医药现代化研究重点专项(2017YFC1702904);国家重大新药创制科技重大专项(2018ZX09721002-008);江西省教育厅科技计划项目(GJJ170718);江西省博士后研究人员科研项目(2020KY51).
通讯作者: 关志宇,Tel:86-791-87118911,E-mail:adlaiguan@126.com
Email: adlaiguan@126.com
相关功能
PDF(879KB) Free
打印本文
0
作者相关文章
周冬艳  在本刊中的所有文章
姜晟  在本刊中的所有文章
关志宇  在本刊中的所有文章
朱卫丰  在本刊中的所有文章
钟凌云  在本刊中的所有文章
刘婧  在本刊中的所有文章
刘荣华  在本刊中的所有文章

参考文献:
[1] Zhang L, Pornpattananangkul D, Hu CJ, et al. Development of nanoparticles for antimicrobial drug delivery[J]. Curr Med Chem, 2010, 17:585-594
[2] Desai N. Challenges in development of nanoparticle-based therapeutics[J]. AAPS J, 2012, 14:282-295.
[3] Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8:543-557.
[4] Docter D, Distler U, Storck W, et al. Quantitative profiling of the protein coronas that form around nanoparticles[J]. Nat Protoc, 2014, 9:2030-2044.
[5] Casals E, Pfaller T, Duschl A, et al. Time evolution of the nanoparticle protein corona[J]. ACS Nano, 2010, 4:3623-3632.
[6] Barbero F, Russo L, Vitali M, et al. Formation of the protein corona:the interface between nanoparticles and the immune system[J]. Semin Immunol, 2017, 34:52-60.
[7] Basu A, Kundu S, Basu C, et al. Biopolymer nanoparticle surface chemistry dictates the nature and extent of protein hard corona[J]. J Mol Liq, 2019, 282:169-176.
[8] Ke PC, Lin S, Parak WJ, et al. A decade of the protein corona[J]. ACS Nano, 2017, 11:11773-11776.
[9] Lima T, Bernfur K, Vilanova M, et al. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles[J]. Sci Rep, 2020, 10:1129.
[10] Palchetti S, Colapicchioni V, Digiacomo L, et al. The protein corona of circulating PEGylated liposomes[J]. Biochim Biophy Acta, 2016, 1858:189-196.
[11] Winzen S, Schoettler S, Baier G, et al. Complementary analysis of the hard and soft protein corona:sample preparation critically effects corona composition[J]. Nanoscale, 2015, 7:2992-3001.
[12] Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proc Nat Acad Sci U S A, 2007, 104:2050-2055.
[13] Tenzer S, Docter D, Kuharev J, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology[J]. Nat Nanotech, 2013, 8:772-781.
[14] Monopoli MP, Walczyk D, Campbell A, et al. Physical-chemical aspects of protein corona:relevance to in vitro and in vivo biological impacts of nanoparticles[J]. J Am Chem Soc, 2011, 133:2525-2534.
[15] Abdelkhaliq A, Der Zande MV, Punt A, et al. Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport[J]. J Nanobiotechnol, 2018, 16:70.
[16] Mirshafiee V, Kim R, Park S, et al. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake[J]. Biomaterials, 2016, 75:295-304.
[17] Cai R, Chen CY. The crown and the scepter:roles of the protein corona in nanomedicine[J]. Adv Mater, 2019, 31:e1805740.
[18] Giulimondi F, Digiacomo L, Pozzi D, et al. Interplay of protein corona and immune cells controls blood residency of liposomes[J]. Nat Commun, 2019, 10:3686.
[19] Garciaalvarez R, Hadjidemetriou M, Sancheziglesias A, et al. In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape[J]. Nanoscale, 2018, 10:1256-1264.
[20] Visalakshan RM, MacGregor MN, Sasidharan S, et al. Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses[J]. ACS Appl Mater Interfaces, 2019, 11:27615-27623.
[21] Yu QH, Zhao LX, Guo CC, et al. Regulating protein corona formation and dynamic proteinexchange by controlling nanoparticle hydrophobicity[J]. Front Bioeng Biotechnol, 2020, 8:210.
[22] Ritz S, Schöttler S, Kotman N, et al. Protein corona of nanoparticles:distinct proteins regulate the cellular uptake[J]. Biomacromolecules, 2015, 16:1311-1321.
[23] Saha K, Rahimi M, Yazdani M, et al. Regulation of macrophage recognition through the interplay of nanoparticle surface functionality and protein corona[J]. ACS Nano, 2016, 10:4421-4430.
[24] Alexis F, Pridgen E, Molnar LK, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles[J]. Mol Pharm, 2008, 5:505-515.
[25] Calatayud M. Sanz B, Raffa V, et al. The effect of surface charge of functionalized Fe3O4nanoparticles on protein adsorption and cell uptake[J]. Biomaterials, 2014, 35:6389-6399.
[26] Almalik A, Benabdelkamel H, Masood A, et al. Hyaluronic acid coated chitosan nanoparticles reduced the immunogenicity of the formed protein corona[J]. Sci Rep, 2017, 7:10542.
[27] Schottler S, Becker G, Winzen S, et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)-and poly(phosphoester)-coated nanocarriers[J]. Nat Nanotechnol, 2016, 11:372-377.
[28] Piloni A, Wong CK, Chen F, et al. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake[J]. Nanoscale, 2019, 11:23259-23267.
[29] He W, Hong Y. Research progress of preparation of drug-loading nanoparticles[J]. China Med Herald (中国医药导报), 2016, 13:33-36.
[30] Zhang T, Tang M, Yao Y, et al. MWCNT interactions with protein:surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity[J]. Int J Nanomedicine, 2019, 14:993-1009.
[31] Li X, Wang B, Zhou S, et al. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney[J]. J Nanobiotechnol, 2020, 18:45.
[32] Tekie FSM, Hajiramezanali M, Geramifar P, et al. Controlling evolution of protein corona:a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life[J]. Sci Rep, 2020, 10:9664.
[33] Walkey CD, Olsen JB, Guo HB, et al. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake[J]. J Am Chem Soc, 2012, 134:2139-2147.
[34] Zhang HJ, Wu TM, Yu WQ, et al. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona[J]. ACS Appl Mater Interfaces, 2018, 10:9094-9103.
[35] Zhou YM, Dai ZF. New strategies in the design of nanomedicine to oppose uptake by the mononuclear phagocyte system for enhancing cancer therapeutic efficacy[J]. Chem Asian J, 2018, 13:3333-3340.
[36] Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumors[J]. Nat Rev Mater, 2016, 1:16014.
[37] Nguyen VH, Lee BJ. Protein corona:a new approach for nanomedicine design[J]. Int J Nanomedicine, 2017, 12:3137-3151.
[38] Bertrand N, Grenier P, Mahmoudi M, et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics[J]. Nat Commun, 2017, 8:777.
[39] Aoyama M, Hata K, Higashisaka K, et al. Clusterin in the protein corona plays a key role in the stealth effect of nanoparticles against phagocytes[J]. Biochem Biophys Res Commun, 2016, 480:690-695.
[40] Owens III DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles[J]. Int J Pharm, 2006, 307:93-102.
[41] Candace FC, Christine PK. Nanoparticle-cell interactions:molecular structure of the protein corona and cellular outcomes[J]. Acc Chem Res, 2014, 47:2651-2659.
[42] Cheng XJ, Tian X, Wu AQ, et al. Protein corona influences cellular uptake of gold nanoparticles by phagocytic and nonphagocytic cells in a size-dependent manner[J]. ACS Appl Mater Interfaces, 2015, 7:20568-20575.
[43] Chen FF, Wang GK, Griffin JI, et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo[J]. Nat Nanotechnol, 2017, 12:387-393.
[44] Choi BY, Park W, Park SB, et al. Recent trends in cell membrane-cloaked nanoparticles for therapeutic applications[J]. Methods, 2020, 177:2-14.
[45] Ahsan SM, Rao CM, Ahmad MF. Nanoparticle-protein interaction:the significance and role of protein corona[J]. Adv Exp Med Biol, 2018, 1048:175-198.
[46] Xiao W, Gao HL. The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system[J]. Int J Pharm, 2018, 552:328-339.
[47] Martin L, Stigler J, Elia G, et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts[J]. Proc Natl Acad Sci U S A, 2008, 105:14265-14270.
[48] Madathiparambil VR, González GLE, Benzigar MR, et al. The Influence of nanoparticle shape on protein corona formation[J]. Small, 2020, 16:2000285.
[49] Bernhard C, Bauer KN, Bonn M, et al. Interfacial conformation of hydrophilic polyphosphoesters affects blood protein adsorption[J]. ACS Appl Mater Interfaces, 2019, 11:1624-1629.
[50] Patsula V, Horák D, Kuka J, et al. Synthesis and modification of uniform PEG-neridronate-modified magnetic nanoparticles determines prolonged blood circulation and biodistributionin a mouse preclinical model[J]. Sci Rep, 2019, 9:10765.
[51] Guo YF, Zhao S, Qiu HH, et al. Shape of nanoparticles as a design parameter to improve docetaxel antitumor efficacy[J]. Bioconjug Chem, 2018, 29:1302-1311.
[52] Berrecoso G, Crecente-Campo J, Alonso MJ. Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers[J]. Drug Deliv Transl Res, 2020, 10:730-750.
[53] Gulati NM, Stewart PL, Steinmetz NF. Bioinspired shielding strategies for nanoparticledrug delivery applications[J]. Mol Pharm, 2018, 15:2900-2909.
[54] Pan Z, Fang D, Song N, et al. Surface distribution and biophysicochemical properties of polymeric micelles bearing geminicationic and hydrophilic groups[J]. ACS Appl Mater Interfaces, 2017, 9:2138-2149.
[55] Li JQ, Qin L, Zheng HL, et al. PEGylated phospholipid-coatedpolylacticacid-glycolic acid microspheres to escape the phagocytosis of alveolar macrophages[J]. Acta Pharm Sin (药学学报), 2019, 54:1303-1311.
[56] Penna M, Yarovsky I. Nanoscale in silico classification of ligand functionalised surfaces for protein adsorption resistance[J]. Nanoscale, 2020, 12:7240-7255.
[57] Parveen S, Sahoo SK. Long circulating chitosan/PEG blendedPLGA nanoparticle for tumor drug delivery[J]. Eur J Pharmacol, 2011, 670:372-383.
[58] Abdollah MRA, Carter TJ, Jones C, et al. Fucoidan prolongs the circulation time of dextran-coated iron oxide nanoparticles[J]. ACS Nano, 2018, 12:1156-1169.
[59] Chen Y, Xu ZQ, Zhu DF, et al. Gold nanoparticles coated with polysarcosine brushes to enhance their colloidal stability and circulation time in vivo[J]. J Colloid Interf Sci, 2016, 483:201-210.
[60] Hyun H, Park JY, Willis K, et al. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors[J]. Biomaterials, 2018, 180:206-224.
[61] Qie YQ, Yuan HF, von Roemeling CA, et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes[J]. Sci Rep, 2016, 6:26269
[62] Zhou H, Fan ZY, Li PY, et al. Dense and dynamic polyethylene glycol shells cloak nanoparticles from uptake by liver endothelial cells for long blood circulation[J]. ACS Nano, 2018, 12:10130-10141.
[63] Sakulkhu U, Mahmoudi M, Maurizi L, et al. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physicochemical properties and coatings[J]. Sci Rep, 2014, 4:5020.
[64] Li HC, Jin K, Luo M, et al. Size dependency of circulation and biodistribution of biomimetic nanoparticles:red blood cell membrane-coated nanoparticles[J]. Cells, 2019, 8:881.
[65] Hu CM, Fang RH, Wang KC, et al. Nanoparticle biointerfacing by platelet membrane cloaking[J]. Nature, 2015, 526:118-121.
[66] Johanna S, Müller LK, Kokkinopoulou M, et al. Exploiting the biomolecular corona:pre-coating of nanoparticles enables controlled cellular interactions[J]. Nanoscale, 2018, 10:10731-10739.
[67] Dal MR, Albertini B, Beretta S, et al. Artificial apolipoprotein corona enables nanoparticle brain targeting[J]. Nanomedicine, 2018, 14:429-438.
[68] Yuan SR, Qi XL, Qin C, et al. Research progress of ferritin nanocage for drug delivery systems[J]. Acta Pharm Sin (药学学报), 2019, 54:1574-1581.
相关文献:
1.余荧蓝, 郑智元, 伊宸辰, 周沐野, 涂家生, 孙春萌.青蒿素长循环脂质体的制备及体外性质评价[J]. 药学学报, 2018,53(6): 1002-1008
2.张文丽 刘建平 刘晓旭 陈志强.隐形丹参酮IIA固体脂质纳米粒:poloxamer 188 包衣对体外吞噬以及大鼠体内药动学的影响[J]. 药学学报, 2009,44(12): 1421-1428
3.林爱华;刘奕明;平其能.壳聚糖纳米粒表面游离氨基与纳米粒特性研究[J]. 药学学报, 2007,42(3): 323-328
4.方超;施斌;洪鸣凰;裴元英;陈红专.粒径和MePEG相对分子质量对隐形纳米粒体外巨噬细胞吞噬和大鼠体内长循环的影响[J]. 药学学报, 2006,41(4): 305-312
5.方超;施斌;裴元英;.重组人肿瘤坏死因子隐形纳米粒的制备及其稳定性[J]. 药学学报, 2004,39(11): 939-943
6.毛声俊;侯世祥;;张良珂;金辉;毕岳琦;蒋彬.肝细胞靶向甘草酸表面修饰白蛋白纳米粒的制备工艺[J]. 药学学报, 2003,38(10): 787-790
7.王杰;张强;索中军;陈大兵;魏树礼.PEG表面修饰硬脂酸脂质纳米粒的制备与体外细胞摄取[J]. 药学学报, 2000,35(8): 622-625