药学学报, 2021, 56(2): 520-527
引用本文:
闫燕艳, 郭乔如, 范欣悦, 朱壮彦, 张海燕, 周雯敏, 杨璐铭, 黄东宇, 张建业. 鸦胆亭上调miR-29a-3p抑制非小细胞肺癌H1299细胞增殖、迁移与侵袭[J]. 药学学报, 2021, 56(2): 520-527.
YAN Yan-yan, GUO Qiao-ru, FAN Xin-yue, ZHU Zhuang-yan, ZHANG Hai-yan, ZHOU Wen-min, YANG Lu-ming, HUANG Dong-yu, ZHANG Jian-ye. Bruceantin inhibits proliferation, migration and invasion of non-small cell lung cancer H1299 cells by up-regulating miR-29a-3p[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 520-527.

鸦胆亭上调miR-29a-3p抑制非小细胞肺癌H1299细胞增殖、迁移与侵袭
闫燕艳1,2, 郭乔如2, 范欣悦2, 朱壮彦1, 张海燕1, 周雯敏2, 杨璐铭2, 黄东宇2, 张建业2
1. 山西大同大学医学院, 免疫研究所, 山西 大同 037009;
2. 广州医科大学药学院, 广东省分子靶标与临床药理学重点实验室, 广东 广州 511436
摘要:
本研究主要探讨鸦胆亭(bruceantin,BCT)对非小细胞肺癌(non-small cell lung cancer,NSCLC)细胞的增殖、侵袭与迁移的抑制作用及其机制。采用MTT法检测BCT对NSCLC细胞株的细胞毒作用;采用集落形成、划痕和Transwell实验分别检测细胞的增殖、迁移与侵袭能力;Western blot及RT-qPCR实验分别检测与细胞增殖、迁移与侵袭等的相关蛋白及miRNA、mRNA的表达情况;利用基因预测网站预测miRNA的下游靶基因。结果显示,BCT对NSCLC细胞株有强大的细胞毒作用,对H1299、PC-9和A549细胞的半数抑制浓度(IC50)分别为0.12 ±0.02、0.31 ±0.20和2.07 ±0.70 μmol·L-1。当0、0.03、0.15和0.75 μmol·L-1BCT分别作用H1299细胞24 h后,其增殖、迁移与侵袭能力呈现浓度依赖性地抑制。值得关注的是,多种与细胞迁移与侵袭相关的miRNA,如miR-29a-3p、miR-21-3p、miR-183-5p与miR-34b-5p的表达水平随着BCT给药浓度的增加而增加,尤其对miR-29a-3p的作用最为明显;通过基因预测网站预测整合素β1(integrin β1,ITGB1)可能为miR-29a-3p的靶基因;Western blot结果进一步显示,多种与细胞增殖、迁移与侵袭相关的蛋白,如整合素家族多种蛋白以及下游β-catenin、p-Src和血管内皮生长因子(vascular endothelial growth factor,VEGF)蛋白的表达均呈浓度依赖性减低,其中ITGB1蛋白降低最明显;而RT-qPCR结果显示ITGB1的mRNA表达与给药浓度无关。由此推测,BCT有可能是通过上调miR-29a-3p抑制ITGB1蛋白的表达,且与其mRNA水平无关,深入的机制仍需进一步探讨。本研究初步提示BCT在NSCLC的治疗中具有继续开发的研究潜力。
关键词:    鸦胆亭      非小细胞肺癌      miR-29a-3p      整合素β1      迁移      侵袭     
Bruceantin inhibits proliferation, migration and invasion of non-small cell lung cancer H1299 cells by up-regulating miR-29a-3p
YAN Yan-yan1,2, GUO Qiao-ru2, FAN Xin-yue2, ZHU Zhuang-yan1, ZHANG Hai-yan1, ZHOU Wen-min2, YANG Lu-ming2, HUANG Dong-yu2, ZHANG Jian-ye2
1. Institute of Immunology and School of Medicine, Shanxi Datong University, Datong 037009, China;
2. Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
Abstract:
We investigated the inhibitory effect and mechanism of action of bruceantin (BCT) on the proliferation, invasion and migration of non-small cell lung cancer (NSCLC) cells. The cytotoxic activity of BCT was measured by MTT assay; a colony forming assay, wound healing assay, and a Transwell assay were used to investigate the anti-proliferative, anti-migration, and anti-invasion effects, respectively; immunoblotting and RT-qPCR were used to detect the expression of related proteins, miRNA, and mRNA, respectively, that were involved in cell proliferation, migration, and invasion. Two gene prediction websites were used to predict the downstream target gene of miRNA. Our results show that BCT has a potent cytotoxic effect on NSCLC cell lines, with a half maximal inhibitory concentration (IC50) of BCT against H1299, PC-9, and A549 of 0.12 ±0.02, 0.31 ±0.20, and 2.07 ±0.70 μmol·L-1, respectively. When H1299 cells were treated with 0.03, 0.15, and 0.75 μmol·L-1 BCT for 24 h, the proliferation, migration, and invasive ability were inhibited in a concentration-dependent manner. It is worth noting that the expression level of miRNAs related to cell migration and invasion, such as miR-29a-3p, miR-21-3p, miR-183-5p, and miR-34b-5p increased with the concentration of BCT, especially for miR-29a-3p. Using the two gene prediction websites, we predict that integrin β1 (ITGB1) may be the target gene of miR-29a-3p; immunoblot results further show that a variety of proteins related to cell proliferation, migration, and invasion, such as various proteins of the integrin family, β-catenin, p-Src, and vascular endothelial growth factor, all decreased in a concentration-dependent manner, among which the reduction of ITGB1 protein was the most obvious. RT-qPCR results showed that there was no change in ITGB1 mRNA expression. We speculate that BCT might inhibit the expression of ITGB1 protein by up-regulating miR-29a-3p independent of its mRNA level. The in-depth mechanism needs to be further explored. This study suggests that BCT has the potential for further development in the treatment of NSCLC.
Key words:    bruceantin    non-small cell lung cancer    miR-29a-3p    integrin β1    migration    invasion   
收稿日期: 2020-10-15
DOI: 10.16438/j.0513-4870.2020-1620
基金项目: 国家自然科学基金资助项目(81773888,81902152);山西省高等学校科技创新项目(2019L0753);2020年广东省科技创新战略专项资金(“攀登计划”专项资金)项目(pdjh2020b0483).
通讯作者: 张建业,Tel:86-20-37103631,E-mail:jianyez@163.com
Email: jianyez@163.com
相关功能
PDF(1116KB) Free
打印本文
0
作者相关文章
闫燕艳  在本刊中的所有文章
郭乔如  在本刊中的所有文章
范欣悦  在本刊中的所有文章
朱壮彦  在本刊中的所有文章
张海燕  在本刊中的所有文章
周雯敏  在本刊中的所有文章
杨璐铭  在本刊中的所有文章
黄东宇  在本刊中的所有文章
张建业  在本刊中的所有文章

参考文献:
[1] Kupchan SM, Britton RW, Ziegler MF, et al. Bruceantin, a new potent antileukemic simaroubolide from brucea antidysenterica[J]. J Org Chem, 1973, 38:178-179.
[2] Arseneau JC, Wolter JM, Kuperminc M, et al. A phase II study of bruceantin (nsc-165, 563) in advanced malignant melanoma[J]. Invest New Drugs, 1983, 1:239-242.
[3] Wiseman CL, Yap HY, Bedikian AY, et al. Phase II trial of bruceantin in metastatic breast carcinoma[J]. Am J Clin Oncol, 1982, 5:389-391.
[4] Cuendet M, Christov K, Lantvit DD, et al. Multiple myeloma regression mediated by bruceantin[J]. Clin Cancer Res, 2004, 10:1170-1179.
[5] Issa ME, Berndt S, Carpentier G, et al. Bruceantin inhibits multiple myeloma cancer stem cell proliferation[J]. Cancer Biol Ther, 2016, 17:966-975.
[6] Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018, 141:1202-1207.
[7] Mishra S, Yadav T, Rani V. Exploring miRNA based approaches in cancer diagnostics and therapeutics[J]. Crit Rev Oncol Hematol, 2016, 98:12-23.
[8] Rupaimoole R, Slack FJ. MicroRNA therapeutics:towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16:203-222.
[9] Huang S, Ingber DE. Cell tension, matrix mechanics, and cancer development[J]. Cancer Cell, 2005, 8:175-176.
[10] Wang F, Weaver VM, Petersen OW, et al. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures:a different perspective in epithelial biology[J]. Proc Natl Acad Sci U S A, 1998, 95:14821-14826.
[11] Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensitivity[J]. Annu Rev Cell Dev Biol, 2003, 19:677-695.
[12] Wu J, Gao W, Tang Q, et al. M2 macrophage-derived exosomes facilitate hepatocarcinoma metastasis by transferring α(m) β(2) integrin to tumor cells[J]. Hepatology, 2020. DOI:10.1002/hep.31432.
[13] Chen W, Harbeck MC, Zhang W, et al. MicroRNA regulation of integrins[J]. Transl Res, 2013, 162:133-143.
[14] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021. DOI:10.3322/caac.21660.
[15] Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553:446-454.
[16] Koshizuka K, Kikkawa N, Hanazawa T, et al. Inhibition of integrin β1-mediated oncogenic signalling by the antitumor family in head and neck squamous cell carcinoma[J]. Oncotarget, 2018, 9:3663-3676.
[17] He B, Xiao YF, Tang B, et al. Htert mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a[J]. Sci Rep, 2016, 6:21955.
[18] Gregory RI, Chendrimada TP, Cooch N, et al. Human risc couples microrna biogenesis and posttranscriptional gene silencing[J]. Cell, 2005, 123:631-640.
[19] Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates miR-181c attenuating burn-induced excessive inflammation[J]. EBioMedicine, 2016, 8:72-82.
[20] Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, et al. MiRNA biogenesis:biological impact in the development of cancer[J]. Cancer Biol Ther, 2014, 15:1444-1455.
[21] Song X, Li Y, Cao X, et al. MicroRNAs and their regulatory roles in plant-environment interactions[J]. Annu Rev Plant Biol, 2019, 70:489-525.
[22] Ashour AA, Gurbuz N, Alpay SN, et al. Elongation factor-2 kinase regulates TG2/β1 integrin/Src/uPAR pathway and epithelial-mesenchymal transition mediating pancreatic cancer cells invasion[J]. J Cell Mol Med, 2014, 18:2235-2251.
[23] Fan JJ, Hsu WH, Lee KH, et al. Dietary flavonoids luteolin and quercetin inhibit migration and invasion of squamous carcinoma through reduction of Src/Stat3/S100A7 signaling[J]. Antioxidants (Basel), 2019, 8:557.
[24] Que ZJ, Yang Y, Liu HT, et al. Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration[J]. J Ethnopharmacol, 2021, 267:113473.
[25] Li X, Liu X, Deng R, et al. Nintedanib inhibits wnt3a-induced myofibroblast activation by suppressing the Src/β-catenin pathway[J]. Front Pharmacol, 2020, 11:310.
[26] Fournier P, Viallard C, Dejda A, et al. The protein tyrosine phosphatase PTPRJ/DEP-1 contributes to the regulation of the Notch-signaling pathway and sprouting angiogenesis[J]. Angiogenesis, 2020, 23:145-157.
[27] Lu YY, Huang XE, Cao J, et al. Phase II study on javanica oil emulsion injection (yadanzi®) combined with chemotherapy in treating patients with advanced lung adenocarcinoma[J]. Asian Pac J Cancer Prev, 2013, 14:4791-4794.
[28] Xu W, Jiang X, Xu Z, et al. The efficacy of oil emulsion injection as adjunctive therapy for advanced non-small-cell lung cancer:a meta-analysis[J]. Evid Based Complement Alternat Med, 2016, 2016:5928562.
相关文献:
1.王建涛, 曾荟珊, 韦珍, 陈亮.黄芩素通过ERK/ELK-1/Snail信号通路抑制食管鳞癌细胞转移的机制[J]. 药学学报, 2021,56(1): 224-230
2.张阳, 杨雨, 李家明, 马晓东, 张艳春, 王玉骏, 朱盼虎.新型川芎嗪类衍生物的设计、合成及其生物活性的研究[J]. 药学学报, 2017,52(11): 1722-1730
3.方方, 陈勇.新型海藻糖衍生物的设计、合成及活性研究[J]. 药学学报, 2015,50(6): 725-732
4.李 阳 刘 浩 黄莹莹 浦龙健 张旭东 蒋志文 蒋琛琛.顺铂联合肝素酶抑制剂对鼻咽癌细胞增殖和侵袭迁移的影响[J]. 药学学报, 2013,48(4): 609-614