药学学报, 2021, 56(2): 593-603
引用本文:
杨雪晗, 林娇, 张雪婷, 徐航, 张佳良, 宋洪涛. 克服肿瘤乏氧的超分子纳米粒的制备及其增强光动力疗效[J]. 药学学报, 2021, 56(2): 593-603.
YANG Xue-han, LIN Jiao, ZHANG Xue-ting, XU Hang, ZHANG Jia-liang, SONG Hong-tao. Preparation and enhanced photodynamic therapy of supramolecular nanoparticles to overcome tumor hypoxia[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 593-603.

克服肿瘤乏氧的超分子纳米粒的制备及其增强光动力疗效
杨雪晗1,2, 林娇2, 张雪婷2, 徐航2, 张佳良2, 宋洪涛2
1. 福建中医药大学药学院, 福建 福州 350108;
2. 中国人民解放军联勤保障部队第九〇〇医院, 福建 福州 350025
摘要:
肿瘤乏氧的微环境使光动力治疗的疗效降低,抑制肿瘤细胞自身呼吸耗氧比增加氧供给更能有效地克服肿瘤乏氧,提高光动力治疗疗效。为了实现这一策略,本研究采用纳米沉淀法制备了装载光敏剂维替泊芬(verteporfin,VER)、耗氧抑制剂阿托伐醌(atovaquone,ATO)及稳定剂聚乙烯吡咯烷酮(PVP)-K30的超分子纳米粒(VER-ATO-supramolecular nanoparticles,VER-ATO-SMN)。以粒径作为评价指标,采用单因素实验确定VER-ATO-SMN的最佳处方为:VER:ATO (w/w)=1:1,PVP-K30用量100 mg,NN-二甲基甲酰胺:水(v/v)=1:10;对超分子纳米粒的形态、大小、粒径分布及包封率等进行表征。结果显示,所制得超分子纳米粒为规则球形,分散性良好,水合动力学直径为101.21 ±4.30 nm,VER和ATO的包封率分别为70.86%和77.52%;纳米粒光稳定性良好,且在模拟生理条件溶液中稳定。与游离VER和VER脂质体相比,VER-ATO-SMN在细胞水平上表现出更强的治疗效果,其机制是能够更有效地进入肿瘤细胞,并通过降低细胞的呼吸耗氧,提高细胞内的氧浓度,从而增加了VER介导的光动力治疗产生的活性氧的数量。本文还建立了4T1荷瘤小鼠模型(动物实验符合中国实验动物护理和使用准则,并经联勤保障部队第九〇〇医院实验动物伦理委员会批准)进行体内药效实验。结果表明,VER-ATO-SMN可有效抑制肿瘤生长甚至完全消融肿瘤。
关键词:    维替泊芬      阿托伐醌      光动力治疗      肿瘤乏氧      细胞呼吸抑制      超分子纳米粒     
Preparation and enhanced photodynamic therapy of supramolecular nanoparticles to overcome tumor hypoxia
YANG Xue-han1,2, LIN Jiao2, ZHANG Xue-ting2, XU Hang2, ZHANG Jia-liang2, SONG Hong-tao2
1. School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China;
2. 900 Hospital of the Joint Logistics Team, Fuzhou 350025, China
Abstract:
The therapeutic effect of tumor photodynamic therapy is severely limited by the hypoxic tumor microenvironment. Inhibiting tumor celloxygen consumption is a more effective way than increasing its oxygen supply to overcome the tumor hypoxia and enhance photodynamic therapy. To carry out this strategy, the supramolecular nanoparticles VER-ATO-SMN loaded with photosensitizer verteporfin (VER), oxygen-consuming inhibitor atovaquone (ATO), and stabilizer polyvinylpyrrolidone (PVP)-K30 were prepared by the nanoprecipitation method, and the optimal prescription was screened and optimized by single factor experiments. The results showed that the optimal prescription for VER-ATO-SMN was ATO:VER (w/w)=1:1, PVP-K30=100 mg, N,N-dimethylformamide:water (v/v)=1:10. The morphology, particle size, particle dispersion index and encapsulation efficiency of supramolecular nanoparticles were characterized. The VER-ATO-SMN showed a spherical morphology and was well dispersed. The hydrodynamic size of VER-ATO-SMN was 101.21 ±4.30 nm as determined by dynamic light scattering (DLS). The encapsulation efficiencies of VER and ATO in VER-ATO-SMN prepared with the optimal prescription were 70.86% and 77.52%, respectively. The VER-ATO-SMN exhibited good laser stability and also showed high stability in conditions which simulated the physiological solution. Compared with free VER and VER liposome, VER-ATO-SMN performed enhanced therapeutic effect at the cell level. The mechanism was that VER-ATO-SMN could effectively incorporate into cells and improving the intracellular oxygen concentration by reducing the oxygen consumption of tumor cells could increase the amount of reactive oxygen species generated by VER mediated photodynamic therapy. The in vivo anticancer efficacy results of tumor-bearing mice suggested that VER-ATO-SMN could effectively inhibit the tumor growth or even completely eliminate the tumor. All animal experiments were performed in line with national regulations and approved by the Animal Experiments Ethical Committee of 900 Hospital of the Joint Logistics Team.
Key words:    verteporfin    atovaquone    photodynamic therapy    tumor hypoxia    cellular respiration inhibition    supramolecular nanoparticle   
收稿日期: 2020-08-07
DOI: 10.16438/j.0513-4870.2020-1295
基金项目: 福建省自然科学基金资助项目(2018J01343).
通讯作者: 张佳良,Tel:86-591-22859169,E-mail:zjlqingdao@126.com;宋洪涛,Tel:86-591-22859853,E-mail:sohoto@vip.163.com
Email: zjlqingdao@126.com;sohoto@vip.163.com
相关功能
PDF(1614KB) Free
打印本文
0
作者相关文章
杨雪晗  在本刊中的所有文章
林娇  在本刊中的所有文章
张雪婷  在本刊中的所有文章
徐航  在本刊中的所有文章
张佳良  在本刊中的所有文章
宋洪涛  在本刊中的所有文章

参考文献:
[1] Awan MA, Tarin SA. Review of photodynamic therapy[J]. Surgeon, 2006, 4:231-236.
[2] Luo L, Liu JB, Yin Z, et al. Biodegradable micelles for two-photon photodynamic therapy in a mouse model of breast cancer[J]. Acta Pharm Sin (药学学报), 2019, 54:927-936.
[3] Zhang J, Jiang CS, Longo JPF, et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy[J]. Acta Pharm Sin B, 2018, 8:137-146.
[4] Harrison LB, Chadha M, Hill RJ, et al. Impact of tumor hypoxia and anemia on radiation therapy outcomes[J]. Oncologist, 2002, 7:492-508.
[5] Meng L, Cheng Y, Tong X, et al. Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects[J]. ACS Nano, 2018, 12:8308-8322.
[6] Luo ZY, Zheng MB, Zhao PF, et al. Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy[J]. Sci Rep, 2016, 6:22403-23393.
[7] Tang W, Zhen ZP, Wang MZ, et al. Red blood cell-facilitated photodynamic therapy for cancer treatment[J]. Adv Funct Mater, 2016, 11:1757-1768.
[8] Gao M, Liang C, Song XJ, et al. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy[J]. Adv Mater, 2017, 29:1701429.
[9] Wang H, Li J, Wang Y, et al. Nanoparticles-mediated reoxygenation strategy relieve tumor hypoxia for enhanced cancer therapy[J]. J Control Release, 2019, 319:25-45.
[10] Nishimura T, Sasaki Y, Akiyoshi K. Biotransporting self-assembled nanofactories using polymer vesicles with molecular permeability for enzyme prodrug cancer therapy[J]. Adv Mater, 2017, 29:1702406.
[11] Sahu A, Kwon I, Tae G. Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia[J]. Biomaterials, 2020, 228:119578.
[12] Secomb TW, Hsu R, Ong ET, et al. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors[J]. Acta Oncol, 1995, 34:313-316.
[13] Li ML, Shao YJ, Kim JH, et al. Unimolecular photodynamic O2-economizer to overcome hypoxia resistance in phototherapeutics[J]. J Am Chem Soc, 2020, 142:5380-5388.
[14] Yang BW, Shi JL. Developing new cancer nanomedicines by repurposing old drugs[J]. Angew Chem Int Ed, 2020. DOI:org/10.1002/anie.202004317.
[15] Coates JT, Skwarski M, Higgins GS. Targeting tumour hypoxia:shifting focus from oxygen supply to demand[J]. Br J Radiol, 2019, 92:20170843.
[16] Fan YT, Zhou TJ, Cui PF, et al. Modulation of intracellular oxygen pressure by dual-drug nanoparticles to enhance photodynamic therapy[J]. Adv Funct Mater, 2019, 29:1806708.
[17] Xia D, Xu P, Luo X, et al. Overcoming hypoxia by multistage nanoparticle delivery system to inhibit mitochondrial respiration for photodynamic therapy[J]. Adv Funct Mater, 2019, 29:1807294.
[18] Qin SY, Zhang AQ, Cheng SX, et al. Drug self-delivery systems for cancer therapy[J]. Biomaterials, 2017, 112:234-247.
[19] Wan FJ, Chen BL, Yang LJ, et al. Active loading of verteporfin into cationic liposome for neovasculature and tumor-targeted photodynamic therapy[J]. Acta Pharm Sin (药学学报), 2020, 55:1680-1690.
[20] Chung JE, Tan S, Gao SJ, et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy[J]. Nat Nanotechnol, 2014, 9:907-912.
[21] Yordanov N, Slavov P. Influence of the diameter and wall thickness of a quartz pipe inserted in the EPR cavity on the signal intensity[J]. Appl Magn Reson, 1996, 10:351-356.
相关文献:
1.万方劼, 陈斌龙, 杨林洁, 殷晴晴, 鄢月, 杨晔, 张强, 汪贻广.主动包载维替泊芬阳离子脂质体用于新生血管和肿瘤靶向光动力治疗[J]. 药学学报, 2020,55(7): 1680-1690