药学学报, 2021, 56(2): 604-609
王雅蓁, 龚涛, 李圆, 高会乐. 卵巢癌患者血浆蛋白冠的形成及其对纳米粒靶向性的影响[J]. 药学学报, 2021, 56(2): 604-609.
WANG Ya-zhen, GONG Tao, LI Yuan, GAO Hui-le. Preparation and targeting capability of corona forming in human ovarian plasma[J]. Acta Pharmaceutica Sinica, 2021, 56(2): 604-609.

王雅蓁1, 龚涛1, 李圆2, 高会乐1
1. 四川大学华西药学院, 四川 成都 610041;
2. 北京大学第三医院妇产科, 北京 100191
纳米制剂进入体内环境后,可以自发地吸附血液中的蛋白质等生物大分子形成蛋白冠,并影响其在体内的预期功能。在不同的生理状态下,血浆蛋白的种类和含量不同,形成蛋白冠后对纳米粒的影响也不同。为此,本研究合成了叶酸(FA)修饰的聚乳酸-羟基乙酸共聚物(PLGA)纳米粒(PLGA-FA),以仅有聚乙二醇(PEG)修饰的纳米粒(PLGA-PEG)为对照组,探究了主动靶向纳米粒在健康人和卵巢癌患者血浆中蛋白冠的形成,以及对其靶向性的影响。血样取自北京大学第三医院,并获得北京大学第三医院医学科学研究伦理委员会伦理审查通过[批件号码:(2019)医伦审第(409-1)号]。动态光散射结果表明,PLGA-FA和PLGA-PEG形成蛋白冠后粒径增加了10~40 nm,绝对电位降低了30 mV;SDS-PAGE凝胶电泳结果表明,在分子质量为45、110和大于180 kDa的蛋白条带,吸附在PLGA-FA上的健康人血浆蛋白和卵巢癌患者血浆蛋白的含量明显不同;流式细胞摄取实验结果表明,PLGA-FA与卵巢癌患者血浆孵育形成蛋白冠后,在卵巢癌细胞SKOV3中的摄取量降低。综上所述,主动靶向纳米粒在与卵巢癌患者血浆共孵育形成蛋白冠后,丧失了纳米粒的主动靶向性。本研究将为病理条件下主动靶向纳米粒的有效性提供参考,了解特定疾病下蛋白冠的形成对纳米制剂的影响,可以加速纳米制剂的临床转化。
关键词:    蛋白冠      靶向性      卵巢癌      聚乳酸-聚乙醇酸共聚物      叶酸     
Preparation and targeting capability of corona forming in human ovarian plasma
WANG Ya-zhen1, GONG Tao1, LI Yuan2, GAO Hui-le1
1. West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
2. Obstetrics and Gynecology Department, Peking University Third Hospital, Beijing 100191, China
After entering the physiological environment, proteins and other biomolecules bind to the nanoparticles' surface, called protein corona. The corona establishes a new bio-interface that affects its physicochemical properties and biological behaviors. Variations in types and contents of human plasma proteins during the different physiological states can substantially change the composition and effects of the corona. With folic acid (FA)-modified polylactic acid-polyglycolic acid copolymer (PLGA) nanoparticles, the formation of protein coronas and their influence on the targeting capability are studied in healthy and ovarian human plasma. All human plasma samples were collected at the Peking University Third Hospital and this study protocol has been approved by Peking University Third Hospital Medical Science Research Ethics Committee (2019-409-1). Dynamic light scattering measurements demonstrated a 10-40 nm increase in their size distributions and a 30 mV decreased in their absolute zeta-potential since protein corona-coated PLGA-PEG and PLGA-FA were formed. The SDS-PAGE analysis showed the composition of the protein coronas from ovarian and healthy plasma in PLGA-FA were markedly distinct, particularly for proteins with molecular weight of 45, 110 and >180 kDa. Flow cytometry indicated that the absorption of ovarian plasma in PLGA-FA led to a lower cellular uptake by SKOV3 cells. Our results suggest that in vitro formed ovarian plasma protein corona could shield targeting molecules and reduced receptor-mediated internalization. The results of this pilot study will provide evidence of the effectiveness of active targeting nanoparticles under pathologic conditions. Additionally, the protein corona in different diseases is emerging as a key point; thus, a comprehensive understanding could accelerate clinical translation of functionalized nanoparticles.
Key words:    protein corona    drug targeting    ovarian neoplasm    polylactic acid-polyglycolic acid copolymer    folic acid   
收稿日期: 2020-12-03
DOI: 10.16438/j.0513-4870.2020-1854
基金项目: 北大医学青年科技创新培育基金资助项目(BMU2020PYB030);国家自然科学基金资助项目(81961138009).
通讯作者: 李圆,E-mail:yuanli@bjmu.edu.cn;高会乐,E-mail:gaohuile@scu.edu.cn
Email: yuanli@bjmu.edu.cn;gaohuile@scu.edu.cn
PDF(778KB) Free
王雅蓁  在本刊中的所有文章
龚涛  在本刊中的所有文章
李圆  在本刊中的所有文章
高会乐  在本刊中的所有文章

[1] Zamboni WC, Torchilin V, Patri AK, et al. Best practices in cancer nanotechnology:perspective from NCI nanotechnology alliance[J]. Clin Cancer Res, 2012, 18:3229-3241.
[2] Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater, 2016. DOI:10.1038/natrevmats.2016.14.
[3] Schulze C, Kroll A, Lehr C, et al. Not ready to use-overcoming pitfalls when dispersing nanoparticles in physiological media[J]. Nanotoxicology, 2008, 2:51-61.
[4] Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proc Natl Acad Sci U S A, 2007, 104:2050-2055.
[5] Monopoli MP, Walczyk D, Campbell A, et al. Physical-chemical aspects of protein corona:relevance to in vitro and in vivo biological impacts of nanoparticles[J]. J Am Chem Soc, 2011, 133:2525-2534.
[6] Chetwynd AJ, Wheeler KE, Lynch I. Best practice in reporting corona studies:minimum information about Nanomaterial Biocorona Experiments (MINBE)[J]. Nano Today, 2019, 28:100758.
[7] Piloni A, Wong CK, Chen F, et al. Surface roughness influences the protein corona formation of glycosylated nanoparticles and alter their cellular uptake[J]. Nanoscale, 2019, 11:23259-23267.
[8] Cai R, Chen C. The crown and the scepter:roles of the protein corona in nanomedicine[J]. Adv Mater, 2018, 31:1805740.
[9] Guan J, Lu WY, Zhan CY. Plasma proteins regulating in vivo performance of liposomes[J]. Acta Pharm Sin (药学学报), 2019, 54:2240-2250.
[10] Lundqvist M, Stigler J, Cedervall T, et al. The evolution of the protein corona around nanoparticles:a test study[J]. ACS Nano, 2011, 5:7503-7509.
[11] Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases[J]. Int J Biol Sci, 2013, 9:1057-1069.
[12] Miow QH, Tan TZ, Ye J, et al. Epithelial-mesenchymal status renders differential responses to cisplatin in ovarian cancer[J]. Oncogene, 2015, 34:1899-1907.
[13] Khalifa AM, Elsheikh MA, Khalifa AM, et al. Current strategies for different paclitaxel-loaded nano-delivery systems towards therapeutic applications for ovarian carcinoma:a review article[J]. J Control Release, 2019, 311-312:125-137.
[14] Wang H, Ding T, Guan J, et al. Interrogation of folic acid-functionalized nanomedicines:the regulatory roles of plasma proteins reexamined[J]. ACS Nano, 2020. DOI:10.1021/acsnano.0c02821.
[15] Li Y, Gao Y, Zhang X, et al. Nanoparticles in precision medicine for ovarian cancer:from chemotherapy to immunotherapy[J]. Int J Pharm, 2020, 591:119986.
[16] Arvizo RR, Giri K, Moyano D, et al. Identifying new therapeutic targets via modulation of protein corona formation by engineered nanoparticles[J]. PLoS One, 2012, 7:e33650.
[17] Ren J, Cai R, Wang J, et al. Precision nanomedicine development based on specific opsonization of human cancer patient-personalized protein coronas[J]. Nano Lett, 2019, 19:4692-4701.
[18] Swider E, Koshkina O, Tel J, et al. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications[J]. Acta Biomater, 2018, 73:38-51.
[19] Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier[J]. Polymers (Basel), 2011, 3:1377-1397.
[20] Saul JM, Annapragada A, Natarajan JV, et al. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro[J]. J Control Release, 2003, 92:49-67.
[21] Han X, Liu J, Liu M, et al. 9-NC-loaded folate-conjugated polymer micelles as tumor targeted drug delivery system:preparation and evaluation in vitro[J]. Int J Pharm, 2009, 372:125-131.
[22] Corbo C, Molinaro R, Tabatabaei M, et al. Personalized protein corona on nanoparticles and its clinical implications[J]. Biomater Sci, 2017, 5:378-387.
[23] Zhang H, Wu T, Yu W, et al. Ligand size and conformation affect the behavior of nanoparticles coated with in vitro and in vivo protein corona[J]. ACS Appl Mater Inter, 2018, 10:9094-9103.
[24] Hadjidemetriou M, Al-Ahmady Z, Mazza M, et al. In vivo biomolecule corona around blood-circulating, clinically used and antibody-targeted lipid bilayer nanoscale vesicles[J]. ACS Nano, 2015, 9:8142-8156.
[25] Kristensen K, Engel TB, Stensballe A, et al. The hard protein corona of stealth liposomes is sparse[J]. J Control Release, 2019, 307:1-15.
[26] Yu L, Xu M, Xu W, et al. Enhanced cancer-targeted drug delivery using precoated nanoparticles[J]. Nano Lett, 2020. DOI:10.1021/acs.nanolett.0c03982.
1.祖元刚, 袁帅, 赵修华, 张俞, 张晓楠, 姜茹.叶酸介导表没食子儿茶素没食子酸白蛋白纳米粒的制备及其体外靶向性与活性评价[J]. 药学学报, 2009,44(5): 525-531