药学学报, 2021, 56(1): 29-36
引用本文:
姚开云, 丁虹琬, 曹琳玉, 高银阁, 张建军, 王贵彬. 组蛋白去乙酰化酶抑制剂的抗抑郁前景[J]. 药学学报, 2021, 56(1): 29-36.
YAO Kai-yun, DING Hong-wan, CAO Lin-yu, GAO Yin-ge, ZHANG Jian-jun, WANG Gui-bin. Prospects for histone deacetylase inhibitors as antidepressants[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 29-36.

组蛋白去乙酰化酶抑制剂的抗抑郁前景
姚开云, 丁虹琬, 曹琳玉, 高银阁, 张建军, 王贵彬
中国医学科学院、北京协和医学院药物研究所, 新药作用机制研究和药效评价北京市重点实验室, 北京 100050
摘要:
抑郁症是一种发病率较高的严重精神疾病,目前对其病理机制尚未全面了解,临床治疗效果十分有限。最近的研究表明,发生在大脑特定脑区的表观遗传调控——即不改变脱氧核糖核酸(deoxyribonucleic acid,DNA)编码的情况下调节基因活性,可能是环境因素与个体遗传相互作用以影响抑郁症发病风险的关键机制。因此,靶向表观遗传调控的药物可能成为开发抗抑郁药的新方向。组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACi)是一类具有抑制组蛋白去乙酰化酶(histone deacetylase,HDAC)活性的化合物。本文从HDAC与抑郁症的关系入手,集中讨论了在临床前研究中具有抗抑郁药效的HDACi,及其治疗抑郁症的潜在机制与主要局限性,并对未来研究进行了展望和讨论。
关键词:    组蛋白去乙酰化酶抑制剂      抑郁症      表观遗传学      乙酰化作用     
Prospects for histone deacetylase inhibitors as antidepressants
YAO Kai-yun, DING Hong-wan, CAO Lin-yu, GAO Yin-ge, ZHANG Jian-jun, WANG Gui-bin
Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Depression is a serious mental illness with a high incidence. At present, we do not fully understand the specific pathological mechanisms of depression, and the efficacy of drug treatments is very limited. Recent studies have shown that epigenetic changes that occur in specific brain regions may be a key mechanism by which environmental factors to interact with individuals to influence the risk of depression. Therefore, drugs that target epigenetic regulation may become a new direction for the development of antidepressants. Histone deacetylase inhibitors (HDACi) are a class of compounds that inhibit histone deacetylase activity, which has been reported to be associated with depression; this article addresses the use of HDACi in preclinical studies, and their potential therapeutic role and limitations of use in depression.
Key words:    histone deacetylase inhibitor    depression    epigenomics    acetylation   
收稿日期: 2020-07-20
DOI: 10.16438/j.0513-4870.2020-1217
基金项目: 国家重点研发资助项目(2017YFC0803608);国家重大新药创制专项(2018ZX09711001-003-001);国家自然科学基金面上项目(81471355).
通讯作者: 王贵彬,Tel:86-10-63165190,Fax:86-10-63182192,E-mail:guibinwang@imm.ac.cn
Email: guibinwang@imm.ac.cn
相关功能
PDF(803KB) Free
打印本文
0
作者相关文章
姚开云  在本刊中的所有文章
丁虹琬  在本刊中的所有文章
曹琳玉  在本刊中的所有文章
高银阁  在本刊中的所有文章
张建军  在本刊中的所有文章
王贵彬  在本刊中的所有文章

参考文献:
[1] Smith K. Mental health:a world of depression[J]. Nature, 2014, 515:181.
[2] Naqvi TZ, Naqvi SS, Merz CN. Gender differences in the link between depression and cardiovascular disease[J]. Psychosom Med, 2005, 67 Suppl 1:S15-S18.
[3] Berton O, Nestler EJ. New approaches to antidepressant drug discovery:beyond monoamines[J]. Nat Rev Neurosci, 2006, 7:137-151.
[4] Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps:a STAR*D report[J]. Am J Psychiatry, 2006, 163:1905-1917.
[5] Molero P, Ramos-Quiroga JA, Martin-Santos R, et al. Antidepressant efficacy and tolerability of ketamine and esketamine:a critical review[J]. CNS Drugs, 2018, 32:411-420.
[6] Power RA, Tansey KE, Buttenschon HN, et al. Genome-wide association for major depression through age at onset stratification:major depressive disorder working group of the psychiatric genomics consortium[J]. Biol Psychiatry, 2017, 81:325-335.
[7] Howard DM, Adams MJ, Clarke TK, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions[J]. Nat Neurosci, 2019, 22:343-352.
[8] Berger SL, Kouzarides T, Shiekhattar R, et al. An operational definition of epigenetics[J]. Genes Dev, 2009, 23:781-783.
[9] Stein MB, Jang KL, Taylor S, et al. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms:a twin study[J]. Am J Psychiatry, 2002, 159:1675-1681.
[10] Nestler EJ. Epigenetic mechanisms of depression[J]. JAMA Psychiatry, 2014, 71:454-456.
[11] Gold PW. The organization of the stress system and its dysregulation in depressive illness[J]. Mol Psychiatry, 2015, 20:32-47.
[12] Bagot RC, Labonte B, Pena CJ, et al. Epigenetic signaling in psychiatric disorders:stress and depression[J]. Dialogues Clin Neurosci, 2014, 16:281-295.
[13] Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology:implications for disease and therapy[J]. Nat Rev Genet, 2009, 10:32-42.
[14] Clayton AL, Hazzalin CA, Mahadevan LC. Enhanced histone acetylation and transcription:a dynamic perspective[J]. Mol Cell, 2006, 23:289-296.
[15] Grunstein M. Histone acetylation in chromatin structure and transcription[J]. Nature, 1997, 389:349-352.
[16] Sabari BR, Zhang D, Allis CD, et al. Metabolic regulation of gene expression through histone acylations[J]. Nat Rev Mol Cell Biol, 2017, 18:90-101.
[17] Shen Y, Wei W, Zhou DX. Histone acetylation enzymes coordinate metabolism and gene expression[J]. Trends Plant Sci, 2015, 20:614-621.
[18] Yang YW, Shuang S, Hu ZW, et al. Advances and applications of lysine acetylation[J]. Acta Pharm Sin (药学学报), 2019, 54:778-787.
[19] Yang XJ, Seto E. The Rpd3/Hda1 family of lysine deacetylases:from bacteria and yeast to mice and men[J]. Nat Rev Mol Cell Biol, 2008, 9:206-218.
[20] Porter NJ, Christianson DW. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases[J]. Curr Opin Struct Biol, 2019, 59:9-18.
[21] Renthal W, Maze I, Krishnan V, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli[J]. Neuron, 2007, 56:517-529.
[22] Gore SD, Carducci MA. Modifying histones to tame cancer:clinical development of sodium phenylbutyrate and other histone deacetylase inhibitors[J]. Expert Opin Investig Drugs, 2000, 9:2923-2934.
[23] Seto E, Yoshida M. Erasers of histone acetylation:the histone deacetylase enzymes[J]. Cold Spring Harb Perspect Biol, 2014, 6:a018713.
[24] Schwer B, Verdin E. Conserved metabolic regulatory functions of sirtuins[J]. Cell Metab, 2008, 7:104-112.
[25] Liu H, Hu Q, Kaufman A, et al. Developmental expression of histone deacetylase 11 in the murine brain[J]. J Neurosci Res, 2008, 86:537-543.
[26] Hobara T, Uchida S, Otsuki K, et al. Altered gene expression of histone deacetylases in mood disorder patients[J]. J Psychiatr Res, 2010, 44:263-270.
[27] Iga J, Ueno S, Yamauchi K, et al. Altered HDAC5 and CREB mRNA expressions in the peripheral leukocytes of major depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2007, 31:628-632.
[28] Covington HE 3rd, Maze I, LaPlant QC, et al. Antidepressant actions of histone deacetylase inhibitors[J]. J Neurosci, 2009, 29:11451-11460.
[29] Abe N, Uchida S, Otsuki K, et al. Altered sirtuin deacetylase gene expression in patients with a mood disorder[J]. J Psychiatr Res, 2011, 45:1106-1112.
[30] Gururajan A, Reif A, Cryan JF, et al. The future of rodent models in depression research[J]. Nat Rev Neurosci, 2019, 20:686-701.
[31] Penney J, Tsai LH. Histone deacetylases in memory and cognition[J]. Sci Signal, 2014, 7:re12.
[32] Erburu M, Cajaleon L, Guruceaga E, et al. Chronic mild stress and imipramine treatment elicit opposite changes in behavior and in gene expression in the mouse prefrontal cortex[J]. Pharmacol Biochem Behav, 2015, 135:227-236.
[33] Chou AH, Chen YL, Hu SH, et al. Polyglutamine-expanded ataxin-3 impairs long-term depression in Purkinje neurons of SCA3 transgenic mouse by inhibiting HAT and impairing histone acetylation[J]. Brain Res, 2014, 1583:220-229.
[34] Kenworthy CA, Sengupta A, Luz SM, et al. Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus[J]. Neuroscience, 2014, 264:88-98.
[35] Covington HE 3rd, Vialou VF, LaPlant Q, et al. Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition[J]. Neurosci Lett, 2011, 493:122-126.
[36] Tsankova NM, Berton O, Renthal W, et al. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action[J]. Nat Neurosci, 2006, 9:519-525.
[37] Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity[J]. Nature, 2009, 459:55-60.
[38] Szyf M. Prospects for the development of epigenetic drugs for CNS conditions[J]. Nat Rev Drug Discov, 2015, 14:461-474.
[39] McClure JJ, Li X, Chou CJ. Advances and challenges of HDAC inhibitors in cancer therapeutics[J]. Adv Cancer Res, 2018, 138:183-211.
[40] Ververis K, Hiong A, Karagiannis TC, et al. Histone deacetylase inhibitors (HDACIs):multitargeted anticancer agents[J]. Biologics, 2013, 7:47-60.
[41] Haddad PM, Das A, Ashfaq M, et al. A review of valproate in psychiatric practice[J]. Expert Opin Drug Metab Toxicol, 2009, 5:539-551.
[42] Kelly DL, Conley RR, Feldman S, et al. Adjunct divalproex or lithium to clozapine in treatment-resistant schizophrenia[J]. Psychiatr Q, 2006, 77:81-95.
[43] Fischer A, Sananbenesi F, Mungenast A, et al. Targeting the correct HDAC(s) to treat cognitive disorders[J]. Trends Pharmacol Sci, 2010, 31:605-617.
[44] Suo H, Wang P, Tong J, et al. NRSF is an essential mediator for the neuroprotection of trichostatin A in the MPTP mouse model of Parkinson's disease[J]. Neuropharmacology, 2015, 99:67-78.
[45] Citraro R, Leo A, De Caro C, et al. Effects of histone deacetylase inhibitors on the development of epilepsy and psychiatric comorbidity in WAG/Rij rats[J]. Mol Neurobiol, 2020, 57:408-421.
[46] Erburu M, Munoz-Cobo I, Dominguez-Andres J, et al. Chronic stress and antidepressant induced changes in HDAC5 and SIRT2 affect synaptic plasticity[J]. Eur Neuropsychopharmacol, 2015, 25:2036-2048.
[47] Bowers AA, Greshock TJ, West N, et al. Synthesis and conformation-activity relationships of the peptide isosteres of FK228 and largazole[J]. J Am Chem Soc, 2009, 131:2900-2905.
[48] Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases[J]. Nat Chem Biol, 2010, 6:238-243.
[49] Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families:a new frontier for drug discovery[J]. Nat Rev Drug Discov, 2012, 11:384-400.
[50] Grayson DR, Kundakovic M, Sharma RP. Is there a future for histone deacetylase inhibitors in the pharmacotherapy of psychiatric disorders?[J]. Mol Pharmacol, 2010, 77:126-135.
[51] Frye R, Myers M, Axelrod KC, et al. Romidepsin:a new drug for the treatment of cutaneous T-cell lymphoma[J]. Clin J Oncol Nurs, 2012, 16:195-204.
[52] Simonini MV, Camargo LM, Dong E, et al. The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases[J]. Proc Natl Acad Sci U S A, 2006, 103:1587-1592.
[53] Uchida S, Hara K, Kobayashi A, et al. Epigenetic status of GDNF in the ventral striatum determines susceptibility and adaptation to daily stressful events[J]. Neuron, 2011, 69:359-372.
[54] Kv A, Madhana RM, Js IC, et al. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice[J]. Behav Brain Res, 2018, 344:73-84.
[55] Bode KA, Schroder K, Hume DA, et al. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment[J]. Immunology, 2007, 122:596-606.
[56] Meylan EM, Halfon O, Magistretti PJ, et al. The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice:possible relevance for treatment-resistant depression[J]. Neuropharmacology, 2016, 107:111-121.
[57] Chen WY, Zhang H, Gatta E, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) alleviates depression-like behavior and normalizes epigenetic changes in the hippocampus during ethanol withdrawal[J]. Alcohol, 2019, 78:79-87.
[58] Valvassori SS, Resende WR, Budni J, et al. Sodium butyrate, a histone deacetylase inhibitor, reverses behavioral and mitochondrial alterations in animal models of depression induced by early- or late-life stress[J]. Curr Neurovasc Res, 2015, 12:312-320.
[59] Schroeder FA, Lin CL, Crusio WE, et al. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse[J]. Biol Psychiatry, 2007, 62:55-64.
[60] Han A, Sung YB, Chung SY, et al. Possible additional antidepressant-like mechanism of sodium butyrate:targeting the hippocampus[J]. Neuropharmacology, 2014, 81:292-302.
[61] Yamawaki Y, Fuchikami M, Morinobu S, et al. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus[J]. World J Biol Psychiatry, 2012, 13:458-467.
[62] Schmauss C. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine[J]. Sci Rep, 2015, 5:8171.
[63] Leighton SP, Nerurkar L, Krishnadas R, et al. Chemokines in depression in health and in inflammatory illness:a systematic review and meta-analysis[J]. Mol Psychiatry, 2018, 23:48-58.
[64] Raison CL, Capuron L, Miller AH. Cytokines sing the blues:inflammation and the pathogenesis of depression[J]. Trends Immunol, 2006, 27:24-31.
[65] Breuillaud L, Rossetti C, Meylan EM, et al. Deletion of CREB-regulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice[J]. Biol Psychiatry, 2012, 72:528-536.
[66] Lu G, Li J, Zhang H, et al. Role and possible mechanisms of Sirt1 in depression[J]. Oxid Med Cell Longev, 2018, 2018:8596903.
[67] Abe-Higuchi N, Uchida S, Yamagata H, et al. Hippocampal sirtuin 1 signaling mediates depression-like behavior[J]. Biol Psychiatry, 2016, 80:815-826.
[68] Ferland CL, Hawley WR, Puckett RE, et al. Sirtuin activity in dentate gyrus contributes to chronic stress-induced behavior and extracellular signal-regulated protein kinases 1 and 2 cascade changes in the hippocampus[J]. Biol Psychiatry, 2013, 74:927-935.
[69] Erburu M, Munoz-Cobo I, Diaz-Perdigon T, et al. SIRT2 inhibition modulate glutamate and serotonin systems in the prefrontal cortex and induces antidepressant-like action[J]. Neuropharmacology, 2017, 117:195-208.
[70] Nierenberg AA, Farabaugh AH, Alpert JE, et al. Timing of onset of antidepressant response with fluoxetine treatment[J]. Am J Psychiatry, 2000, 157:1423-1428.
[71] Fukada M, Hanai A, Nakayama A, et al. Loss of deacetylation activity of HDAC6 affects emotional behavior in mice[J]. PLoS One, 2012, 7:e30924.
[72] Espallergues J, Teegarden SL, Veerakumar A, et al. HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience[J]. J Neurosci, 2012, 32:4400-4416.
[73] Martinez-Pacheco H, Picazo O, Lopez-Torres A, et al. Biochemical and behavioral characterization of IN14, a new inhibitor of HDACs with antidepressant-like properties[J]. Biomolecules, 2020, 10:299.
[74] Ghosh B, Zhao WN, Reis SA, et al. Dissecting structure-activity-relationships of crebinostat:brain penetrant HDAC inhibitors for neuroepigenetic regulation[J]. Bioorg Med Chem Lett, 2016, 26:1265-1271.
[75] Covington HE 3rd, Maze I, Vialou V, et al. Antidepressant action of HDAC inhibition in the prefrontal cortex[J]. Neuroscience, 2015, 298:329-335.