药学学报, 2021, 56(1): 37-49
引用本文:
彭印, 徐雪君, 李建萍, 李成曦, 尹佳婷, 段金廒, 郭建明. 靶向肠道菌群调控肠源尿毒素代谢通路干预慢性肾病进展的治疗策略分析[J]. 药学学报, 2021, 56(1): 37-49.
PENG Yin, XU Xue-jun, LI Jian-ping, LI Cheng-xi, YIN Jia-ting, DUAN Jin-ao, GUO Jian-ming. Strategy to delay the progression of chronic kidney disease by targeting gut microbiota and uremic toxins metabolism pathway[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 37-49.

靶向肠道菌群调控肠源尿毒素代谢通路干预慢性肾病进展的治疗策略分析
彭印, 徐雪君, 李建萍, 李成曦, 尹佳婷, 段金廒, 郭建明
南京中医药大学, 江苏省方剂高技术研究重点实验室, 江苏省中药资源产业化过程协同创新中心, 江苏 南京 210023
摘要:
慢性肾病(chronic kidney disease,CKD)是一种发病率高、预后差、并发症复杂的重大慢性疾病,对人类健康造成极大危害。硫酸吲哚酚(indoxyl-sulfate,IS)和硫酸对甲酚(p-cresol sulfate,PCS)是两种典型的肠源尿毒素,由肠道菌群与宿主共代谢生成。随着慢性肾病的进展,慢性肾病患者体内的IS和PCS等肠源尿毒素不断蓄积,并进一步促进CKD进展。肠道菌群与CKD密切相关,靶向肠道菌群调控肠源尿毒素合成及代谢通路很可能是延缓CKD进展的新思路及新策略。本文通过对肠道菌群及肠源尿毒素与慢性肾病进展之间的关系进行分析,提出基于肠源尿毒素代谢调控干预慢性肾病进展的治疗策略。
关键词:    慢性肾病      肠道菌群      肠源尿毒素      硫酸吲哚酚      硫酸对甲酚     
Strategy to delay the progression of chronic kidney disease by targeting gut microbiota and uremic toxins metabolism pathway
PENG Yin, XU Xue-jun, LI Jian-ping, LI Cheng-xi, YIN Jia-ting, DUAN Jin-ao, GUO Jian-ming
Jiangsu Key Laboratory of High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Nanjing University of Chinese Medicine, Nanjing 210023, China
Abstract:
Chronic kidney disease (CKD) is a serious chronic disease with high incidence, poor prognosis, and a variety of complications. Indoxyl-sulfate (IS) and p-cresol sulfate (PCS) are two typical gut-derived uremic toxins, which are produced by the co-metabolism of intestinal microbes and the host. With the progression of CKD, gut-derived uremic toxins such as IS and PCS accumulate in patients with CKD and thereafter accelerate the progression of CKD. Gut microbiota is closely related with CKD, and targeting gut microbiota to regulate gut-derived uremic toxins synthesis and metabolic pathways may be a promising strategy to delay the progression of CKD. In this paper, the relationship between gut microbiota, gut-derived uremic toxins, and CKD was analyzed, and the strategy to delay the progression of CKD by targeting gut microbiota and uremic toxins metabolism pathway was proposed.
Key words:    chronic kidney disease    gut microbiota    gut-derived uremic toxin    indoxyl-sulfate    p-cresol sulfate   
收稿日期: 2020-07-27
DOI: 10.16438/j.0513-4870.2020-1246
基金项目: 国家自然科学基金资助项目(81773983).
通讯作者: 郭建明,Tel:86-25-85811917,E-mail:njuguo@njucm.edu.cn
Email: njuguo@njucm.edu.cn
相关功能
PDF(1295KB) Free
打印本文
0
作者相关文章
彭印  在本刊中的所有文章
徐雪君  在本刊中的所有文章
李建萍  在本刊中的所有文章
李成曦  在本刊中的所有文章
尹佳婷  在本刊中的所有文章
段金廒  在本刊中的所有文章
郭建明  在本刊中的所有文章

参考文献:
[1] Levey AS, Coresh J. Chronic kidney disease[J]. Lancet, 2012, 379:165-180.
[2] Chen T, Harris DC. Challenges of chronic kidney disease prevention[J]. Med J Aust, 2015, 203:209-210.
[3] Wang Y, Tong Q, Shou JW, et al. Gut microbiota-mediated personalized treatment of hyperlipidemia using berberine[J]. Theranostics, 2017, 7:2443-2451.
[4] Bello AK, Levin A, Tonelli M, et al. Assessment of global kidney health care status[J]. JAMA, 2017, 317:1864-1881.
[5] Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China:a cross-sectional survey[J]. Lancet, 2012, 379:815-822.
[6] Cai GY, Chen XM. Complications of chronic kidney disease:current management and challenge[J]. Chin J Pract Intern Med (中国实用内科杂志), 2010, 30:102-103.
[7] Hakemi MS. Chronic kidney disease epidemiology[J]. Iran J Kidney Dis, 2014, 8:261-262.
[8] Parrish AR. Advances in chronic kidney disease[J]. Int J Mol Sci, 2016, 17:1314.
[9] Gao X, Mei CL. Guideline for screening, diagnosis, prevention and treatment of chronic kidney disease[J]. Chin J Pract Intern Med (中国实用内科杂志), 2017, 37:28-34.
[10] Jonsson AL, Backhed F. Drug the bug![J]. Cell, 2015, 163:1565-1566.
[11] Garber K. Drugging the gut microbiome[J]. Nat Biotechnol, 2015, 33:228-231.
[12] Brown JM, Hazen SL. Targeting of microbe-derived metabolites to improve human health:the next frontier for drug discovery[J]. J Biol Chem, 2017, 292:8560-8568.
[13] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163:1585-1595.
[14] Roberts AB, Gu X, Buffa JA, et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential[J]. Nat Med, 2018, 24:1407-1417.
[15] Sun L, Xie C, Wang G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nat Med, 2018, 24:1919-1929.
[16] Bry L, Falk PG, Midtvedt T, et al. A model of host-microbial interactions in an open mammalian ecosystem[J]. Science, 1996, 273:1380-1383.
[17] Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489:220-230.
[18] Guarner F. Enteric flora in health and disease[J]. Digestion, 2006, 73 Suppl 1:5-12.
[19] Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308:1635-1638.
[20] Mafra D, Lobo JC, Barros AF, et al. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease[J]. Future Microbiol, 2014, 9:399-410.
[21] Sun YM, Zhang YT, Zhang JH, et al. Advances in the study of gut pharmacomicrobiomics[J]. Acta Pharm Sin (药学学报), 2020, 55:2314-2321.
[22] Wang Y, Jiang JD. A new research mode of drug PK-PD mediated by the gut microbiota:insights into the pharmacokinetics of berberine[J]. Acta Pharm Sin (药学学报), 2018, 53:659-666.
[23] Zhang JH, Zhang JM, Wang R, et al. Interaction of amoxicillin and nifedipine mediated by intestinal flora[J]. Acta Pharm Sin (药学学报), 2018, 53:1721-1725.
[24] Yin JX, Lin DR. Intestinal flora and desease[J]. Bull Biol (生物学通报), 2004, 39:26-28.
[25] Kanbay M, Onal EM, Afsar B, et al. The crosstalk of gut microbiota and chronic kidney disease:role of inflammation, proteinuria, hypertension, and diabetes mellitus[J]. Int Urol Nephrol, 2018, 50:1453-1466.
[26] Turner JR. Intestinal mucosal barrier function in health and disease[J]. Nat Rev Immunol, 2009, 9:799-809.
[27] Catalioto RM, Maggi CA, Giuliani S. Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions[J]. Curr Med Chem, 2011, 18:398-426.
[28] Sabatino A, Regolisti G, Brusasco I, et al. Alterations of intestinal barrier and microbiota in chronic kidney disease[J]. Nephrol Dial Transplant, 2015, 30:924-933.
[29] Vaziri ND, Zhao YY, Pahl MV. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD:the nature, mechanisms, consequences and potential treatment[J]. Nephrol Dial Transplant, 2016, 31:737-746.
[30] Andersen K, Kesper MS, Marschner JA, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation[J]. J Am Soc Nephrol, 2017, 28:76-83.
[31] Ritz E. Intestinal-renal syndrome:mirage or reality?[J]. Blood Purif, 2011, 31:70-76.
[32] Meijers BK, Evenepoel P. The gut-kidney axis:indoxyl sulfate, p-cresyl sulfate and CKD progression[J]. Nephrol Dial Transplant, 2011, 26:759-761.
[33] Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora[J]. Kidney Int, 2013, 83:308-315.
[34] Zhang P, Wei M, Jiang HL, et al. Gut bacterial translocation contributes to microinflammationin experimental uremia[J]. Chin J Nephrol (中华肾脏病杂志), 2013, 29:611-615.
[35] Vaziri ND, Yuan J, Rahimi A, et al. Disintegration of colonic epithelial tight junction in uremia:a likely cause of CKD-associated inflammation[J]. Nephrol Dial Transplant, 2012, 27:2686-2693.
[36] Vaziri ND, Goshtasbi N, Yuan J, et al. Uremic plasma impairs barrier function and depletes the tight junction protein constituents of intestinal epithelium[J]. Am J Nephrol, 2012, 36:438-443.
[37] Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins:classification, concentration, and interindividual variability[J]. Kidney Int, 2003, 63:1934-1943.
[38] Wu IW, Hsu KH, Lee CC, et al. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease[J]. Nephrol Dial Transplant, 2011, 26:938-947.
[39] Jing YJ, Ni JW, Ding FH, et al. p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE-/- mice[J]. Kidney Int, 2016, 89:439-449.
[40] Han H, Zhu J, Zhu Z, et al. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes[J]. J Am Heart Assoc, 2015, 4:e001852.
[41] Koppe L, Pillon NJ, Vella RE, et al. p-Cresyl sulfate promotes insulin resistance associated with CKD[J]. J Am Soc Nephrol, 2013, 24:88-99.
[42] Gryp T, Vanholder R, Vaneechoutte M, et al. p-Cresyl sulfate[J]. Toxins (Basel), 2017, 9:52.
[43] Watanabe H, Miyamoto Y, Otagiri M, et al. Update on the pharmacokinetics and redox properties of protein-bound uremic toxins[J]. J Pharm Sci, 2011, 100:3682-3695.
[44] Gorin Y. Nox4 as a potential therapeutic target for treatment of uremic toxicity associated to chronic kidney disease[J]. Kidney Int, 2013, 83:541-543.
[45] Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase[J]. Kidney Int, 2013, 83:582-592.
[46] Hung SC, Kuo KL, Huang HL, et al. Indoxyl sulfate suppresses endothelial progenitor cell-mediated neovascularization[J]. Kidney Int, 2016, 89:574-585.
[47] Devlin AS, Marcobal A, Dodd D, et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota[J]. Cell Host Microbe, 2016, 20:709-715.
[48] de Loor H, Meijers BK, Meyer TW, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography[J]. J Chromatogr A, 2009, 1216:4684-4688.
[49] Deguchi T, Ohtsuki S, Otagiri M, et al. Major role of organic anion transporter 3 in the transport of indoxyl sulfate in the kidney[J]. Kidney Int, 2002, 61:1760-1768.
[50] Vanholder R, Schepers E, Pletinck A, et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate:a systematic review[J]. J Am Soc Nephrol, 2014, 25:1897-1907.
[51] Niwa T. Indoxyl sulfate is a nephro-vascular toxin[J]. J Ren Nutr, 2010, 20:S2-S6.
[52] Liu WC, Tomino Y, Lu KC. Impacts of indoxyl sulfate and p-cresol sulfate on chronic kidney disease and mitigating effects of AST-120[J]. Toxins (Basel), 2018, 10:367.
[53] Motojima M, Hosokawa A, Yamato H, et al. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells[J]. Kidney Int, 2003, 63:1671-1680.
[54] Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition[J]. PLoS One, 2012, 7:e34026.
[55] Sun CY, Chang SC, Wu MS. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation[J]. Kidney Int, 2012, 81:640-650.
[56] Lindberg K, Amin R, Moe OW, et al. The kidney is the principal organ mediating klotho effects[J]. J Am Soc Nephrol, 2014, 25:2169-2175.
[57] Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease[J]. J Am Soc Nephrol, 2011, 22:124-136.
[58] Young GH, Wu VC. Klotho methylation is linked to uremic toxins and chronic kidney disease[J]. Kidney Int, 2012, 81:611-612.
[59] Shimizu H, Bolati D, Adijiang A, et al. Indoxyl sulfate downregulates renal expression of Klotho through production of ROS and activation of nuclear factor-κB[J]. Am J Nephrol, 2011, 33:319-324.
[60] Shimizu H, Bolati D, Adijiang A, et al. NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells[J]. Am J Physiol Cell Physiol, 2011, 301:C1201-C1212.
[61] Lekawanvijit S, Adrahtas A, Kelly DJ, et al. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes?[J]. Eur Heart J, 2010, 31:1771-1779.
[62] Yang K, Xu X, Nie L, et al. Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway[J]. Toxicol Lett, 2015, 234:110-119.
[63] Chen WT, Chen YC, Hsieh MH, et al. The uremic toxin indoxyl sulfate increases pulmonary vein and atrial arrhythmogenesis[J]. J Cardiovasc Electrophysiol, 2015, 26:203-210.
[64] Lekawanvijit S. Cardiotoxicity of uremic toxins:a driver of cardiorenal syndrome[J]. Toxins (Basel), 2018, 10:352.
[65] Adelibieke Y, Shimizu H, Muteliefu G, et al. Indoxyl sulfate induces endothelial cell senescence by increasing reactive oxygen species production and p53 activity[J]. J Ren Nutr, 2012, 22:86-89.
[66] Tumur Z, Niwa T. Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells[J]. Am J Nephrol, 2009, 29:551-557.
[67] Ryu JH, Kim SJ. Clopidogrel effectively suppresses endothelial microparticle generation induced by indoxyl sulfate via inhibition of the p38 mitogen-activated protein kinase pathway[J]. Blood Purif, 2011, 32:186-194.
[68] Tumur Z, Shimizu H, Enomoto A, et al. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation[J]. Am J Nephrol, 2010, 31:435-441.
[69] Ito S, Osaka M, Higuchi Y, et al. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin[J]. J Biol Chem, 2010, 285:38869-38875.
[70] Yamamoto H, Tsuruoka S, Ioka T, et al. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells[J]. Kidney Int, 2006, 69:1780-1785.
[71] Watanabe I, Tatebe J, Namba S, et al. Activation of aryl hydrocarbon receptor mediates indoxyl sulfate-induced monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells[J]. Circ J, 2013, 77:224-230.
[72] Gondouin B, Cerini C, Dou L, et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway[J]. Kidney Int, 2013, 84:733-744.
[73] Chitalia VC, Shivanna S, Martorell J, et al. Uremic serum and solutes increase post-vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor[J]. Circulation, 2013, 127:365-376.
[74] Shivanna S, Kolandaivelu K, Shashar M, et al. The aryl hydrocarbon receptor is a critical regulator of tissue factor stability and an antithrombotic target in uremia[J]. J Am Soc Nephrol, 2016, 27:189-201.
[75] Adijiang A, Goto S, Uramoto S, et al. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats[J]. Nephrol Dial Transplant, 2008, 23:1892-1901.
[76] Muteliefu G, Enomoto A, Jiang P, et al. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells[J]. Nephrol Dial Transplant, 2009, 24:2051-2058.
[77] Nii-Kono T, Iwasaki Y, Uchida M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells[J]. Kidney Int, 2007, 71:738-743.
[78] Mozar A, Louvet L, Godin C, et al. Indoxyl sulphate inhibits osteoclast differentiation and function[J]. Nephrol Dial Transplant, 2012, 27:2176-2181.
[79] Lin YT, Wu PH, Liang SS, et al. Protein-bound uremic toxins are associated with cognitive function among patients undergoing maintenance hemodialysis[J]. Sci Rep, 2019, 9:20388.
[80] Brito JS, Borges NA, Anjos JSD, et al. Aryl hydrocarbon receptor and uremic toxins from the gut microbiota in chronic kidney disease patients:is there a relationship between them?[J]. Biochemistry, 2019, 58:2054-2060.
[81] Dou L, Sallee M, Cerini C, et al. The cardiovascular effect of the uremic solute indole-3 acetic acid[J]. J Am Soc Nephrol, 2015, 26:876-887.
[82] Lin YT, Wu PH, Lee HH, et al. Indole-3 acetic acid increased risk of impaired cognitive function in patients receiving hemodialysis[J]. Neurotoxicology, 2019, 73:85-91.
[83] Miyamoto Y, Watanabe H, Noguchi T, et al. Organic anion transporters play an important role in the uptake of p-cresyl sulfate, a uremic toxin, in the kidney[J]. Nephrol Dial Transplant, 2011, 26:2498-2502.
[84] Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase[J]. Kidney Int, 2013, 83:582-592.
[85] Schepers E, Meert N, Glorieux G, et al. p-Cresyl sulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production[J]. Nephrol Dial Transplant, 2007, 22:592-596.
[86] Pletinck A, Glorieux G, Schepers E, et al. Protein-bound uremic toxins stimulate crosstalk between leukocytes and vessel wall[J]. J Am Soc Nephrol, 2013, 24:1981-1994.
[87] Meijers BK, Van Kerckhoven S, Verbeke K, et al. The uremic retention solute p-cresyl sulfate and markers of endothelial damage[J]. Am J Kidney Dis, 2009, 54:891-901.
[88] Gross P, Massy ZA, Henaut L, et al. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling[J]. J Cell Physiol, 2015, 230:2927-2935.
[89] Han H, Zhu J, Zhu Z, et al. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes[J]. J Am Heart Assoc, 2015, 4:e001852.
[90] Chang JF, Hsieh CY, Liou JC, et al. Scavenging intracellular ROS attenuates p-cresyl sulfate-triggered osteogenesis through MAPK signaling pathway and NF-κB activation in human arterial smooth muscle cells[J]. Toxins (Basel), 2020, 12:472.
[91] Wang CP, Lu YC, Tsai IT, et al. Increased levels of total p-cresyl sulfate are associated with pruritus in patients with chronic kidney disease[J]. Dermatology, 2016, 232:363-370.
[92] Fiaccadori E, Cosola C, Sabatino A. Targeting the gut for early diagnosis, prevention, and cure of diabetic kidney disease:is the phenyl sulfate story another step forward?[J]. Am J Kidney Dis, 2020, 75:144-147.
[93] Edamatsu T, Fujieda A, Itoh Y. Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells[J]. PLoS One, 2018, 13:e0193342.
[94] Kikuchi K, Saigusa D, Kanemitsu Y, et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease[J]. Nat Commun, 2019, 10:1835.
[95] Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation[J]. Cell Metab, 2013, 17:49-60.
[96] Missailidis C, Hallqvist J, Qureshi AR, et al. Serum trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease[J]. PLoS One, 2016, 11:e0141738.
[97] Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease[J]. Circ Res, 2015, 116:448-455.
[98] Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165:111-124.
[99] Fujii H, Yonekura Y, Yamashita Y, et al. Anti-oxidative effect of AST-120 on kidney injury after myocardial infarction[J]. Br J Pharmacol, 2016, 173:1302-1313.
[100] Schulman G, Berl T, Beck GJ, et al. The effects of AST-120 on chronic kidney disease progression in the United States of America:a post hoc subgroup analysis of randomized controlled trials[J]. BMC Nephrol, 2016, 17:141.
[101] Yamamoto S, Kazama JJ, Omori K, et al. Continuous reduction of protein-bound uraemic toxins with improved oxidative stress by using the oral charcoal adsorbent AST-120 in haemodialysis patients[J]. Sci Rep, 2015, 5:14381.
[102] Koya Y, Uchida S, Machi Y, et al. Prediction of drug interaction between oral adsorbent AST-120 and concomitant drugs based on the in vitro dissolution and in vivo absorption behavior of the drugs[J]. Eur J Clin Pharmacol, 2016, 72:1353-1361.
[103] Zou C, Wu YC, Lin QZ, et al. Effects of Chinese herbal enema therapy combined basic treatment on BUN, SCr, UA, and IS in chronic renal failure patients[J]. Chin J Integr Tradit West Med (中国中西医结合杂志), 2012, 32:1192-1195.
[104] Lu Z, Zeng Y, Lu F, et al. Rhubarb enema attenuates renal tubulointerstitial fibrosis in 5/6 nephrectomized rats by alleviating indoxyl sulfate overload[J]. PLoS One, 2015, 10:e0144726.
[105] Sirich TL, Fong K, Larive B, et al. Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the frequent hemodialysis network daily trial[J]. Kidney Int, 2017, 91:1186-1192.
[106] Martinez AW, Recht NS, Hostetter TH, et al. Removal of p-cresol sulfate by hemodialysis[J]. J Am Soc Nephrol, 2005, 16:3430-3436.
[107] Meyer TW, Hostetter TH. Uremia[J]. N Engl J Med, 2007, 357:1316-1325.
[108] Gryp T, De Paepe K, Vanholder R, et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease[J]. Kidney Int, 2020, 97:1230-1242.
[109] Gryp T, Huys GRB, Joossens M, et al. Isolation and quantification of uremic toxin precursor-generating gut bacteria in chronic kidney disease patients[J]. Int J Mol Sci, 2020, 21:1986.
[110] Eidi F, Poor-Reza Gholi F, Ostadrahimi A, et al. Effect of Lactobacillus Rhamnosus on serum uremic toxins (phenol and p-cresol) in hemodialysis patients:a double blind randomized clinical trial[J]. Clin Nutr ESPEN, 2018, 28:158-164.
[111] Lee TH, Park D, Kim YJ, et al. Lactobacillus salivarius BP121 prevents cisplatin‑induced acute kidney injury by inhibition of uremic toxins such as indoxyl sulfate and p‑cresol sulfate via alleviating dysbiosis[J]. Int J Mol Med, 2020, 45:1130-1140.
[112] Bao N, Chen F, Dai D. The regulation of host intestinal microbiota by polyphenols in the development and prevention of chronic kidney disease[J]. Front Immunol, 2020, 10:2981.
[113] Schulman G, Berl T, Beck GJ, et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD[J]. J Am Soc Nephrol, 2015, 26:1732-1746.
[114] Wang Z, Peng Y, Li XB. Effect of sijunzi decoction on the intestinal flora disturbance in two rat models of Pi-deficiency syndrome[J]. Chin J Integr Tradit West Med (中国中西医结合杂志), 2009, 29:825-829.
[115] Lu JB, Wang YY, Zhang S, et al. Huang-Kui-Si-Wu Formula decreases uremic toxin production by modulating intestinal microbial metabolic pathways[J]. Acta Pharm Sin (药学学报), 2020, 55:1229-1236.
[116] Wang YY, Li JP, Lu JB, et al. Effect and mechanism of Huangkui capsule on reduction of uremic toxin accumulation in an animal model of chronic kidney disease[J]. Acta Pharm Sin (药学学报), 2019, 54:2267-2276.
[117] Zeng YQ, Dai Z, Lu F, et al. Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease[J]. Oncotarget, 2016, 7:17468-17478.
[118] Zhao J. Interaction Between Magnesium Lithospermate B and Gut Microbiota (丹参乙酸镁与肠道菌群的相互作用)[D]. Shanghai:Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, 2018.
[119] Gao XJ, Li T, Wei B, et al. Regulatory mechanisms of gut microbiota on intestinal CYP3A and P-glycoprotein in rats with dextran sulfate sodium-induced colitis[J]. Acta Pharm Sin (药学学报), 2017, 52:34-43.
[120] Li XL, Jiang W, Fan WM, et al. Role of gut microbiota in the treatment of nonalcoholic fatty liver disease with traditional Chinese medicine[J]. Acta Pharm Sin (药学学报), 2020, 55:15-24.
[121] Wang R, Wang L, Wei GY, et al. The effect and mechanism of baicalein on regulating gut microbiota and improving chemotherapy-induced intestinal mucositis in mice[J]. Acta Pharm Sin (药学学报), 2020, 55:868-876.
相关文献:
1.李昭君, 陈晓光, 张森.肠道菌群-代谢物网络同慢性肾病发生发展的关系及其关联机制研究进展[J]. 药学学报, 2020,55(12): 2777-2784
2.陆静波, 王颖异, 张森, 李建萍, 李成曦, 徐雪君, 彭印, 陈晨凯, 郭建明, 段金廒.黄葵四物方调控肠道菌群中代谢通路干预尿毒素合成的作用机制研究[J]. 药学学报, 2020,55(6): 1229-1236
3.王颖异, 李建萍, 陆静波, 李成曦, 于金高, 张森, 江曙, 郭建明, 段金廒.黄葵减轻慢性肾病模型大鼠体内尿毒素蓄积的作用及机制研究[J]. 药学学报, 2019,54(12): 2267-2276