药学学报, 2021, 56(1): 61-69
引用本文:
王美琴, 胡冰莹, 王润婧, 燕攀, 杜支凤, 姜宏梁. 基于脂质组学技术的中药降脂作用研究[J]. 药学学报, 2021, 56(1): 61-69.
WANG Mei-qin, HU Bing-ying, WANG Run-jing, YAN Pan, DU Zhi-feng, JIANG Hong-liang. Research on the lipid-lowering effect of traditional Chinese medicine using lipidomics technology[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 61-69.

基于脂质组学技术的中药降脂作用研究
王美琴1, 胡冰莹2, 王润婧1, 燕攀1, 杜支凤1, 姜宏梁1
1. 华中科技大学同济药学院, 湖北 武汉 430030;
2. 浙江省医学科学研究院, 浙江 杭州 310013
摘要:
高脂血症是一种常见的血脂异常疾病,是导致各种心血管疾病的重要危险因素。中药具有疗效确切、不良反应少、作用温和等优点,广泛应用于预防和治疗高脂血症。然而,由于中药成分复杂且作用靶点多,其降脂作用机制尚不明确。脂质组学作为研究生物系统中脂质及脂质相互作用的一门学科,能对不同生理病理状态下的脂质进行定性定量分析,寻找与中药降脂作用相关的潜在生物标志物,为系统地研究中药降脂作用提供可借鉴的思路。本综述介绍了脂质组学的主要研究方法,总结了近年来脂质组学在中药降脂作用研究中的应用,以期为中药降脂作用研究提供方法参考。
关键词:    高脂血症      中药      脂质组学      质谱     
Research on the lipid-lowering effect of traditional Chinese medicine using lipidomics technology
WANG Mei-qin1, HU Bing-ying2, WANG Run-jing1, YAN Pan1, DU Zhi-feng1, JIANG Hong-liang1
1. Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China;
2. Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
Abstract:
Hyperlipidemia is a common disease with abnormal blood lipids and is an important risk factor for various cardiovascular diseases. Traditional Chinese medicine has the advantages of dependable lipid-lowering effects with few side effects and is widely used in the prevention and treatment of hyperlipidemia in China. However, due to the complex composition of traditional Chinese medicine and the many targets for treating hyperlipidemia, the mechanisms by which these medicines lower lipid levels are not well resolved. Lipidomics is a discipline that studies lipids and the interaction of lipids in biological systems. Lipidomics can identify and quantify the lipids in vivo under physiological and pathological conditions, helping to discover the potential biomarkers related to the lipid-lowering effects of traditional Chinese medicine and providing a basis for systematically studying the lipid-lowering effect of traditional Chinese medicine. This review introduces the principal research methods used in lipidomics and summarizes the results and prospects of application of lipidomics in the research on the lipid-lowering effects of traditional Chinese medicine.
Key words:    hyperlipidemia    traditional Chinese medicine    lipidomics    mass spectrometry   
收稿日期: 2020-06-26
DOI: 10.16438/j.0513-4870.2020-1066
基金项目: 国家自然科学基金资助项目(81874309);浙江省医学科学院青年基金资助项目(2020Y003).
通讯作者: 姜宏梁,Tel:86-27-66663909,E-mail:jianghongliang@hust.edu.cn
Email: jianghongliang@hust.edu.cn
相关功能
PDF(918KB) Free
打印本文
0
作者相关文章
王美琴  在本刊中的所有文章
胡冰莹  在本刊中的所有文章
王润婧  在本刊中的所有文章
燕攀  在本刊中的所有文章
杜支凤  在本刊中的所有文章
姜宏梁  在本刊中的所有文章

参考文献:
[1] Hlaing TT, Park A. Hyperlipidaemia[J]. Medicine, 2013, 41:607-609.
[2] Bertolotti M, Maurantonio M, Gabbi C, et al. Review article:hyperlipidaemia and cardiovascular risk[J]. Aliment Pharmacol Ther, 2005, 22(Suppl 2):28-30.
[3] Yi SH, Yi SZ. Clinical rational use of lipid-lowering drugs:research advances[J]. J Int Pharm Res (国际药学研究杂志), 2012, 39:210-214.
[4] Xiang C, Li Y, Li K. Hypothesis on "one output multi-source" of traditional Chinese medicine complex system[J]. Acta Pharm Sin (药学学报), 2019, 54:801-807.
[5] Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics[J]. Anal Chem, 2016, 88:524-545.
[6] Sun JF. Clinical application of hypolipidemic drugs and analysis of national drug use[J]. World J Complex Med (世界复合医学), 2018, 4:100-102.
[7] Cao Y, Mei YR, Xu HX. Progress in clinical research of Chinese medicine treatment of hyperlipidemia[J]. Mod Diagn Treat (现代诊断与治疗), 2017, 28:1397-1398, 1538.
[8] Xiong LW, He S, Liu WT. Research progress of knee osteoarthritis treated by Chinese medicine[J]. Henan Tradit Chin Med (河南中医), 2015, 35:439-442.
[9] Dou XB, Wo XD, Fan CL. Progress of research in treatment of hyperlipidemia by monomer or compound recipe of Chinese herbal medicine[J]. Chin J Integr Med, 2008, 14:71-75.
[10] Li S, Jin SN, Song CW, et al. The metabolic change of serum lysophosphatidylcholines involved in the lipid lowering effect of triterpenes from Alismatis rhizoma on high-fat diet induced hyperlipidemia mice[J]. J Ethnopharmacol, 2016, 177:10-18.
[11] Shi LL, Wang J, Wang Y, et al. MDG-1, an ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids[J]. Carbohydr Polym, 2016, 150:74-81.
[12] Li ZY, Ding LL, Li JM, et al. 1H-NMR and MS based metabolomics study of the intervention effect of curcumin on hyperlipidemia mice induced by high-fat diet[J]. PLoS One, 2015, 10:e0120950.
[13] Gao Y, Su YP, Huo YY, et al. Identification of antihyperlipidemic constituents from the roots of Rubia yunnanensis Diels[J]. J Ethnopharmacol, 2014, 155:1315-1321.
[14] Nishida M, Kondo M, Shimizu T, et al. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) Harms leaves in high-fat-diet fed mice[J]. J Sci Food Agric, 2016, 96:3717-3722.
[15] Yao P, Song FF, Li K, et al. Ginkgo biloba extract prevents ethanol induced dyslipidemia[J]. Am J Chin Med, 2007, 35:643-652.
[16] Lu YL, Du YM, Qin L, et al. Gypenosides altered hepatic bile acids homeostasis in mice treated with high fat diet[J]. Evid Based Complement Alternat Med, 2018, 2018:8098059.
[17] Xia W, Sun CH, Zhao Y, et al. Hypolipidemic and antioxidant activities of sanchi (radix notoginseng) in rats fed with a high fat diet[J]. Phytomedicine, 2011, 18:516-520.
[18] Shen N, Li CN, Yi H, et al. Advances of the mechanism study on berberine in the control of blood glucose and lipid as well as metabolism disorders[J]. Acta Pharm Sin (药学学报), 2010, 45:699-704.
[19] Fahy E, Subramaniam S, Murphy RC, et al. Update of the LIPID MAPS comprehensive classification system for lipids[J]. J Lipid Res, 2009, 50(Suppl):S9-S14.
[20] Hu T, Zhang JL. Mass-spectrometry-based lipidomics[J]. J Sep Sci, 2018, 41:351-372.
[21] Burdge GC, Calder PC. Introduction to fatty acids and lipids[J]. World Rev Nutr Diet, 2015, 112:1-16.
[22] Fahy E, Cotter D, Sud M, et al. Lipid classification, structures and tools[J]. Biochim Biophys Acta, 2011, 1811:637-647.
[23] Dowhan W, Bogdanov M, Mileykovskaya E. Biochemistry of Lipids, Lipoproteins and Membranes[M]. 6th Ed. Boston:Elsevier, 2016:1-40.
[24] Han XL, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry:a bridge to lipidomics[J]. J Lipid Res, 2003, 44:1071-1079.
[25] Chiurchiù V, Leuti A, Maccarrone M. Bioactive lipids and chronic inflammation:managing the fire within[J]. Front Immunol, 2018, 9:38.
[26] Ference BA, Graham I, Tokgozoglu L, et al. Impact of lipids on cardiovascular health:JACC health promotion series[J]. J Am Coll Cardiol, 2018, 72:1141-1156.
[27] Wang B, Tontonoz P. Phospholipid remodeling in physiology and disease[J]. Annu Rev Physiol, 2019, 81:165-188.
[28] Patel D, Witt SN. Ethanolamine and phosphatidylethanolamine:partners in health and disease[J]. Oxid Med Cell Longev, 2017, 2017:4829180.
[29] Vaz FM, Pras-Raves M, Bootsma AH, et al. Principles and practice of lipidomics[J]. J Inherit Metab Dis, 2015, 38:41-52.
[30] Wenk MR. The emerging field of lipidomics[J]. Nat Rev Drug Discov, 2005, 4:594-610.
[31] Srivastava NK. Proton nuclear magnetic resonance (1H NMR) spectroscopy-based analysis of lipid components in serum/plasma of patients with Duchenne Muscular Dystrophy (DMD)[J]. Methods Mol Biol, 2018, 1687:195-204.
[32] Kato T, Nishimiya M, Kawata A, et al. Quantitative 31P NMR method for individual and concomitant determination of phospholipid classes in polar lipid samples[J]. J Oleo Sci, 2018, 67:1279-1289.
[33] Yang K, Han XL. Lipidomics:techniques, applications, and outcomes related to biomedical sciences[J]. Trends Biochem Sci, 2016, 41:954-969.
[34] Li M, Zhou ZG, Nie HG, et al. Recent advances of chromatography and mass spectrometry in lipidomics[J]. Anal Bioanal Chem, 2011, 399:243-249.
[35] Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis:a primer[J]. Anal Bioanal Chem, 2020, 412:2191-2209.
[36] Han XL, Gross RW. Shotgun lipidomics:electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples[J]. Mass Spectrom Rev, 2005, 24:367-412.
[37] Han XL. Lipidomics[M]. New Jersey:John Wiley & Sons, 2016:53-88.
[38] Zhang Q, Wang GJ,A JY, et al. Application of GC/MS-based metabonomic profiling in studying the lipid-regulating effects of Ginkgo biloba extract on diet-induced hyperlipidemia in rats[J]. Acta Pharmacol Sin, 2009, 30:1674-1687.
[39] Anesi A, Guella G. A fast liquid chromatography-mass spectrometry methodology for membrane lipid profiling through hydrophilic interaction liquid chromatography[J]. J Chromatogr A, 2015, 1384:44-52.
[40] Sparvero LJ, Amoscato AA, Dixon CE, et al. Mapping of phospholipids by MALDI imaging (MALDI-MSI):realities and expectations[J]. Chem Phys Lipids, 2012, 165:545-562.
[41] Wang JN, Wang CY, Han X. Tutorial on lipidomics[J]. Anal Chim Acta, 2019, 1061:28-41.
[42] Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226:497-509.
[43] Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37:911-917.
[44] Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics[J]. J Lipid Res, 2008, 49:1137-1146.
[45] Southam AD, Weber RJM, Engel J, et al. A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics[J]. Nat Protoc, 2016, 12:310-328.
[46] Nazari M, Muddiman DC. Enhanced lipidome coverage in shotgun analyses by using gas-phase fractionation[J]. J Am Soc Mass Spectrom, 2016, 27:1735-1744.
[47] Koelmel JP, Kroeger NM, Gill EL, et al. Expanding lipidome coverage using LC-MS/MS data-dependent acquisition with automated exclusion list generation[J]. J Am Soc Mass Spectrom, 2017, 28:908-917.
[48] Skotland T, Ekroos K, Kauhanen D, et al. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers[J]. Eur J Cancer, 2017, 70:122-132.
[49] Weir JM, Wong G, Barlow CK, et al. Plasma lipid profiling in a large population-based cohort[J]. J Lipid Res, 2013, 54:2898-2908.
[50] Han X, Gross RW. Structural determination of lysophospholipid regioisomers by electrospray ionization tandem mass spectrometry[J]. J Am Chem Soc, 1996, 118:451-457.
[51] Murphy RC, Okuno T, Johnson CA, et al. Determination of double bond positions in polyunsaturated fatty acids using the photochemical Paternò-Büchi reaction with acetone and tandem mass spectrometry[J]. Anal Chem, 2017, 89:8545-8553.
[52] Han XL. Lipidomics[M]. New Jersey:John Wiley & Sons, 2016:121-150.
[53] Boccard J, Veuthey JL, Rudaz S. Knowledge discovery in metabolomics:an overview of MS data handling[J]. J Sep Sci, 2010, 33:290-304.
[54] Checa A, Bedia C, Jaumot J. Lipidomic data analysis:tutorial, practical guidelines and applications[J]. Anal Chim Acta, 2015, 885:1-16.
[55] Katajamaa M, Oresic M. Data processing for mass spectrometry-based metabolomics[J]. J Chromatogr A, 2007, 1158:318-328.
[56] Wang Y, Yu HL, Ping GL. Primary discussion of the keys on the modernization of Chinese medicine[J]. World J Integr Tradit West Med (世界中西医结合杂志), 2014, 9:768-770.
[57] Li SH, Huang MH, Lin P. Discussion on the relationship between traditional Chinese medicine state and lipidomics[J]. China J Tradit Chin Med Pharm (中华中医药杂志), 2019, 34:129-131.
[58] Zhang SM, Qi DM, Cao YM, et al. Lipidomics study on intervention by Uncaria on hepatic metabolic disorder in spontaneously hypertensive rats[J]. Acta Pharm Sin (药学学报), 2019, 54:1636-1644.
[59] Shon JC, Shin HS, Seo YK, et al. Direct infusion MS-based lipid profiling reveals the pharmacological effects of compound K-reinforced ginsenosides in high-fat diet induced obese mice[J]. J Agric Food Chem, 2015, 63:2919-2929.
[60] Deng YJ, Pan MX, Nie H, et al. Lipidomic analysis of the protective effects of Shenling Baizhu San on non-alcoholic fatty liver disease in rats[J]. Molecules, 2019, 24:3943.
[61] Zhai LX, Ning ZW, Huang T, et al. Leaves tea improves dyslipidemia in diabetic mice:a lipidomics-based network pharmacology study[J]. Front Pharmacol, 2018, 9:973.
[62] Kurihara H, Asami S, Shibata H, et al. Hypolipemic effect of Cyclocarya paliurus (Batal) Iljinskaja in lipid-loaded mice[J]. Biol Pharm Bull, 2003, 26:383-385.
[63] Miao H, Zhao YH, Vaziri ND, et al. Lipidomics biomarkers of diet-induced hyperlipidemia and its treatment with Poria cocos[J]. J Agric Food Chem, 2016, 64:969-979.
[64] Zhang T, Zhao Q, Xiao XR, et al. Modulation of lipid metabolism by celastrol[J]. J Proteome Res, 2019, 18:1133-1144.
[65] Shi QX, Jin SN, Xiang XL, et al. The metabolic change in serum lysoglycerophospholipids intervened by triterpenoid saponins from Kuding tea on hyperlipidemic mice[J]. Food Funct, 2019, 10:7782-7792.
[66] Jin SN, Song CW, Li S, et al. Preventive effects of turmeric on the high-fat diet-induced hyperlipidaemia in mice associated with a targeted metabolomic approach for the analysis of serum lysophosphatidylcholine using LC-MS/MS[J]. J Funct Foods, 2014, 11:130-141.
[67] Wang M, Wang YN, Zhao M, et al. Metabolic profiling analysis of fatty acids from hyperlipidemic rats treated with Gynostemma pentaphyllum and atorvastatin based on GC/MS[J]. Anal Methods, 2014, 6:8660-8667.
[68] Tao Y, Chen X, Cai H, et al. Untargeted serum metabolomics reveals Fu-Zhu-Jiang-Tang tablet and its optimal combination improve an impaired glucose and lipid metabolism in type Ⅱ diabetic rats[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1040:222-232.
[69] Cai Y, Zhao M, Guan ZB, et al. Metabolomics analysis of the therapeutic mechanism of Semen Descurainiae Oil on hyperlipidemia rats using 1H-NMR and LC-MS[J]. Biomed Chromatogr, 2019, 33:e4536.
相关文献:
1.刘洁, 李月婷, 陈奕君, 肖红斌.高分辨质谱数据处理策略在中药体内外成分检测和表征中的应用进展[J]. 药学学报, 2021,56(1): 113-129
2.张世明, 齐冬梅, 曹艺明, 周洪雷, 蒋海强, 李运伦, 张倩.钩藤干预自发性高血压大鼠肝脏代谢紊乱的脂质组学研究[J]. 药学学报, 2019,54(9): 1636-1644
3.王璐, 皮子凤, 刘舒, 刘志强, 宋凤瑞.现代质谱技术在中药代谢及药代动力学研究中的应用[J]. 药学学报, 2016,51(8): 1217-1226
4.谢婷婷 仇 峰 杨美华 戚爱棣.高效液相色谱-串联质谱法同时测定中药材中的伏马毒素B1和B2[J]. 药学学报, 2011,46(7): 822-827