药学学报, 2021, 56(1): 102-112
引用本文:
彭浡, 王建荣. 振动光谱在药物晶型表征中的应用研究进展[J]. 药学学报, 2021, 56(1): 102-112.
PENG Bo, WANG Jian-rong. Advances in characterization of pharmaceutical polymorphisms by vibrational spectroscopy[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 102-112.

振动光谱在药物晶型表征中的应用研究进展
彭浡, 王建荣
中国科学院上海药物研究所, 上海 201203
摘要:
固态药物的多晶型研究对药物质量控制、生产工艺选择、临床疗效评价等发挥重要作用。振动光谱是药物多晶型表征的有力手段之一。本文重点概述了近年来利用傅里叶变换红外(FTIR)光谱技术和拉曼(Raman)光谱技术在活性药物成分(APIs)及药物共晶/盐的多晶型表征中的应用研究进展,阐明两种光谱技术在APIs和药物复合物的晶型分析中的应用特点,为药物开发过程中的结构分析提供理论支持。
关键词:    活性药物成分      药物复合物      多晶型      红外光谱      拉曼光谱     
Advances in characterization of pharmaceutical polymorphisms by vibrational spectroscopy
PENG Bo, WANG Jian-rong
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Abstract:
The determination and characterization of solid drug form polymorphisms plays an important role in drug quality control, selection of the production process and clinical efficacy evaluation. Vibrational spectroscopy is a powerful method for the characterization of drug polymorphisms. In this paper we review recent research and application advances in the polymorphic characterization of active pharmaceutical ingredients (APIs) and drug cocrystals/salts by using Fourier transform infrared (FTIR) and Raman spectroscopy to elucidate the characteristics of APIs and drug complexes. This may provide theoretical support for structural analysis during the development process for drugs.
Key words:    active pharmaceutical ingredient    drug complex    polymorphism    Fourier transform infrared spectroscopy    Raman spectroscopy   
收稿日期: 2020-08-02
DOI: 10.16438/j.0513-4870.2020-1291
基金项目: 上海市自然科学基金资助项目(18ZR1447900).
通讯作者: 王建荣,Tel/Fax:86-21-50806600-5209,E-mail:jrwang@simm.ac.cn
Email: jrwang@simm.ac.cn
相关功能
PDF(1251KB) Free
打印本文
0
作者相关文章
彭浡  在本刊中的所有文章
王建荣  在本刊中的所有文章

参考文献:
[1] Singhal D, Curatolo W. Drug polymorphism and dosage form design:a practical perspective[J]. Adv Drug Deliv Rev, 2004, 56:335-347.
[2] Talaczynska A, Dzitko J, Cielecka-Piontek J. Benefits and limitations of polymorphic and amorphous forms of active pharmaceutical ingredients[J]. Curr Pharm Design, 2016, 22:4975-4980.
[3] Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs:advanced characterization techniques[J]. Adv Drug Deliv Rev, 2017, 117:111-146.
[4] Higashi K, Ueda K, Moribe K. Recent progress of structural study of polymorphic pharmaceutical drugs[J]. Adv Drug Deliv Rev, 2017, 117:71-85.
[5] Kumar A, Singh P, Nanda A. Hot stage microscopy and its applications in pharmaceutical characterization[J]. Appl Microsc, 2020, 50:12.
[6] Hao C, Jin J, Xiong J, et al. Polymorphs of DP-VPA solid solutions and their physicochemical properties[J]. J Pharm Sci, 2020, 109:2156-2165.
[7] Eddleston MD, Bithell EG, Jones W. Transmission electron microscopy of pharmaceutical materials[J]. J Pharm Sci, 2010, 99:4072-4083.
[8] Sardo M, Martins ICB, Vladiskovic C, et al. Characterization of pharmaceutical solids combining NMR, X-ray diffraction and computer modelling, in Biophysical techniques in drug discovery[M]//Canales A. Biophysical Techniques in Drug Discovery. UK:The Royal Society of Chemistry, 2018:120-169.
[9] Aitipamula S, Chow PS, Tan RBH. Conformational polymorphs of a muscle relaxant, metaxalone[J]. Cryst Growth Des, 2011, 11:4101-4109.
[10] Zimmermann B, Baranović G. Thermal analysis of paracetamol polymorphs by FT-IR spectroscopies[J]. J Pharm Biomed, 2011, 54:295-302.
[11] Ayala AP, Siesler HW, Boese R, et al. Solid state characterization of olanzapine polymorphs using vibrational spectroscopy[J]. Int J Pharm, 2006, 326:69-79.
[12] Xu Y, Southern SA, Szell PMJ, et al. The role of solid-state nuclear magnetic resonance in crystal engineering[J]. CrystEngComm, 2016, 18:5236-5252.
[13] Hsieh WH, Cheng WT, Chen LC, et al. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy[J]. Asian J Pharm Sci, 2018, 13:212-219.
[14] Gong NB, Yang DZ, Jin GM, et al. Structure, characterization, solubility and stability of podophyllotoxin polymorphs[J]. J Mol Struct, 2019, 1195:323-330.
[15] Du Y, Xue JD. Investigation of polymorphism and cocrystallization of active pharmaceutical ingredients using vibrational spectroscopic techniques[J]. Curr Pharm Design, 2016, 22:4917-4928.
[16] Feng HZ, Bondi RW, Anderson CA, et al. Investigation of the sensitivity of transmission Raman spectroscopy for polymorph detection in pharmaceutical tablets[J]. Appl Spectrosc, 2017, 71:1856-1867.
[17] Aina A, Hargreaves MD, Matousek P, et al. Transmission Raman spectroscopy as a tool for quantifying polymorphic content of pharmaceutical formulations[J]. Analyst, 2010, 135:2328-2333.
[18] Cîntǎ Pînzaru S, Pavel I, Leopold N, et al. Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering[J]. J Raman Spectrosc, 2004, 35:338-346.
[19] Paudel A, Raijada D, Rantanen J. Raman spectroscopy in pharmaceutical product design[J]. Adv Drug Deliv Rev, 2015, 89:3-20.
[20] Andrea E. Application of vibrational spectroscopy to study solid-state transformations of pharmaceuticals[J]. Curr Pharm Design, 2016, 22:4883-4911.
[21] Hertrampf A, Sousa RM, Menezes JC, et al. Semi-quantitative prediction of a multiple api solid dosage form with a combination of vibrational spectroscopy methods[J]. J Pharm Biomed, 2016, 124:246-253.
[22] Bunaciu AA, Aboul-Enein HY, Hoang VD. Vibrational spectroscopy used in polymorphic analysis[J]. Trends Analyt Chem, 2015, 69:14-22.
[23] Ma LW, Du W, Zhao CS. Advances in the quantitative analytical methods of drug polymorphism[J]. Acta Pharm Sin (药学学报), 2011, 46:896-903.
[24] Chadha R, Haneef J. Near-infrared spectroscopy:effective tool for screening of polymorphs in pharmaceuticals[J]. Appl Spectrosc Rev, 2015, 50:565-583.
[25] Lee AY, Erdemir D, Myerson AS. Crystal polymorphism in chemical process development[J]. Annu Rev Chem Biomol, 2011, 2:259-280.
[26] Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials:design, properties and characterization[J]. Chem Commun, 2014, 50:906-923.
[27] Li MQ, Zhang Q, Wang JR, et al. Mechanochromism triggered fluorescent color switching among polymorphs of a natural fluorescence pigment[J]. Chem Commun, 2016, 52:11288-11291.
[28] Surov AO, Manin AN, Voronin AP, et al. Weak interactions cause packing polymorphism in pharmaceutical two-component crystals. The case study of the salicylamide cocrystal[J]. Cryst Growth Des, 2017, 17:1425-1437.
[29] Zhu BQ, Wang JR, Mei XF. Insight into the phase transformation among various solid forms of baicalein[J]. Cryst Growth Des, 2015, 15:4959-4968.
[30] Zhang Q, Mei XF. Two new polymorphs of huperzine a obtained from different dehydration processes of one monohydrate[J]. Cryst Growth Des, 2016, 16:3535-3542.
[31] Suresh K, Nangia A. Curcumin:pharmaceutical solids as a platform to improve solubility and bioavailability[J]. CrystEngComm, 2018, 20:3277-3296.
[32] Wang JR, Wang XJ, Lu LY, et al. Highly crystalline forms of valsartan with superior physicochemical stability[J]. Cryst Growth Des, 2013, 13:3261-3269.
[33] Singaraju AB, Bahl D, Wang CG, et al. Molecular interpretation of the compaction performance and mechanical properties of caffeine cocrystals:a polymorphic study[J]. Mol Pharm, 2020, 17:21-31.
[34] de Oliveira GHO, do Nascimento SB, de Oliveira FM, et al. Systematic evaluation of the impact of solid-state polymorphism on the bioavailability of thalidomide[J]. Eur J Pharm Sci, 2019, 136:104937.
[35] Gao ZG, Rohani S, Gong JB, et al. Recent developments in the crystallization process:toward the pharmaceutical industry[J]. Engineering, 2017, 3:343-353.
[36] Ali SFB, Rahman Z, Dharani S, et al. Chemometric models for quantification of carbamazepine anhydrous and dihydrate forms in the formulation[J]. J Pharm Sci, 2019, 108:1211-1219.
[37] Ma YX, Wang N, Dai SY, et al. Preparation and characterization of rivaroxaban as an anticoagulant[J]. Acta Pharm Sin (药学学报), 2019, 54:2069-2073.
[38] Guo CY, Luo XF, Zhou XH, et al. Quantitative analysis of binary polymorphs mixtures of fusidic acid by diffuse reflectance FTIR spectroscopy, diffuse reflectance FT-NIR spectroscopy, Raman spectroscopy and multivariate calibration[J]. J Pharm Biomed, 2017, 140:130-136.
[39] Kulkarni SA, McGarrity ES, Meekes H, et al. Isonicotinamide self-association:the link between solvent and polymorph nucleation[J]. Chem Commun, 2012, 48:4983-4985.
[40] Ewing AV, Kazarian SG. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations[J]. Spectrochim Acta Part A, 2018, 197:10-29.
[41] Song YJ, Cong YH, Wang B, et al. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations[J]. Expert Opin Drug Del, 2020, 17:551-571.
[42] Liu HD, Yang PP, Li ZH, et al. Thermodynamics, characterization, and polymorphic transformation of 1,5-pentanediamine carbonate[J]. Ind Eng Chem Res, 2020, 59:10185-10194.
[43] Liu Y, Huang HW, Wu JM, et al. Polymorphs of clopidogrel bisulfate[J]. Acta Pharm Sin (药学学报), 2013, 48:1358-1360.
[44] Detrich Á, Dömötör KJ, Katona MT, et al. Polymorphic forms of bisoprolol fumarate[J]. J Therm Anal Calorim, 2019, 135:3043-3055.
[45] Maurin MB, Vickery RD, Rabel SR, et al. Polymorphism of roxifiban[J]. J Pharm Sci, 2002, 91:2599-2604.
[46] Schmidt AC. Solid-state characterization of falicaine hydrochloride and isomorphic dyclonine hydrochloride-part iv. Crystal polymorphism of local anaesthetic drugs[J]. Eur J Pharm Sci, 2005, 25:407-416.
[47] Calvo NL, Kaufman TS, Maggio RM. A PCA-based chemometrics-assisted ATR-FTIR approach for the classification of polymorphs of cimetidine:application to physical mixtures and tablets[J]. J Pharm Biomed, 2015, 107:419-425.
[48] Lin SY. Molecular perspectives on solid-state phase transformation and chemical reactivity of drugs:metoclopramide as an example[J]. Drug Discov Today, 2015, 20:209-222.
[49] Wang SL, Lin SY, Hsieh TF, et al. Thermal behavior and thermal decarboxylation of 10-hydroxycamptothecin in the solid state[J]. J Pharm Biomed, 2007, 43:457-463.
[50] Wang Y, Li ZH, Zhang ZX, et al. Applications of Raman spectroscopy in pharmaceutical analysis[J]. Acta Pharm Sin (药学学报), 2004, 39:764-768.
[51] Du Y, Wang YG, Xue JD, et al. Structural insights into anhydrous and monohydrated forms of 2,4,6-trihydroxybenzoic acid based on Raman and terahertz spectroscopic characterization[J]. Spectrochim Acta Part A, 2020, 224:117436.
[52] Lin MX, Wu YY, Rohani S. A kinetic study of crystallization process of imatinib mesylate with polymorphic transformation phenomenon[J]. J Cryst Growth, 2019, 507:146-153.
[53] Bhumika DP, Priti JM. An overview:application of Raman spectroscopy in pharmaceutical field[J]. Curr Pharm Anal, 2010, 6:131-141.
[54] Baraldi C, Freguglia G, Tinti A, et al. IR, Raman and SERS spectra of propantheline bromide[J]. Spectrochim Acta A, 2013, 103:1-10.
[55] Cailletaud J, De Bleye C, Dumont E, et al. Detection of low dose of piroxicam polymorph in pharmaceutical tablets by surface-enhanced Raman chemical imaging (SER-CI) and multivariate analysis[J]. Int J Pharm, 2020, 574:118913.
[56] Šašić S, Mehrens S. Raman chemical mapping of low-content active pharmaceutical ingredient formulations. Iii. Statistically optimized sampling and detection of polymorphic forms in tablets on stability[J]. Anal Chem, 2012, 84:1019-1025.
[57] Yang X, Lu J, Wang XJ, et al. In situ monitoring of the solution-mediated polymorphic transformation of glycine:characterization of the polymorphs and observation of the transformation rate using Raman spectroscopy and microscopy[J]. J Raman Spectrosc, 2008, 39:1433-1439.
[58] Simone E, Saleemi AN, Tonnon N, et al. Active polymorphic feedback control of crystallization processes using a combined Raman and ATR-UV/VIS spectroscopy approach[J]. Cryst Growth Des, 2014, 14:1839-1850.
[59] Manimunda P, Asif SAS, Mishra MK. Probing stress induced phase transformation in aspirin polymorphs using Raman spectroscopy enabled nanoindentation[J]. Chem Commun, 2019, 55:9200-9203.
[60] Maheux CR, Alarcon IQ, Copeland CR, et al. Identification of polymorphism in ethylone hydrochloride:synthesis and characterization[J]. Drug Test Anal, 2016, 8:847-857.
[61] Sheikhzadeh M, Rohani S, Jutan A, et al. Solid-state characterization of buspirone hydrochloride polymorphs[J]. Pharm Res, 2006, 23:1043-1050.
[62] Wardhana YW, Soewandhi SN, Wikarsa S, et al. Observation of polymorphic transformation of amorphous efavirenz during heating and grinding processes using Raman spectroscopy[J]. Res J Pharm Biol Chem Sci, 2017, 8:280-286.
[63] Zhao YY, Bao Y, Wang JK, et al. In situ focused beam reflectance measurement (FBRM), attenuated total reflectance fourier transform infrared (ATR-FTIR) and Raman characterization of the polymorphic transformation of carbamazepine[J]. Pharmaceutics, 2012, 4:164-178.
[64] Surwase SA, Boetker JP, Saville D, et al. Indomethacin:new polymorphs of an old drug[J]. Mol Pharm, 2013, 10:4472-4480.
[65] Cherukuvada S, Kaur R, Guru Row TN. Co-crystallization and small molecule crystal form diversity:from pharmaceutical to materials applications[J]. CrystEngComm, 2016, 18:8528-8555.
[66] Gadade DD, Pekamwar SS. Pharmaceutical cocrystals:regulatory and strategic aspects, design and development[J]. Adv Pharm Bull, 2016, 6:479-494.
[67] Saal C, Becker A. Pharmaceutical salts:a summary on doses of salt formers from the orange book[J]. Eur J Pharm Sci, 2013, 49:614-623.
[68] Aitipamula S, Wong ABH, Chow PS, et al. Pharmaceutical salts of haloperidol with some carboxylic acids and artificial sweeteners:hydrate formation, polymorphism, and physicochemical properties[J]. Cryst Growth Des, 2014, 14:2542-2556.
[69] Swapna B, Maddileti D, Nangia A. Cocrystals of the tuberculosis drug isoniazid:polymorphism, isostructurality, and stability[J]. Cryst Growth Des, 2014, 14:5991-6005.
[70] Iwata K, Karashima M, Ikeda Y. Isotope-edited infrared spectroscopy for efficient discrimination between pharmaceutical salts and cocrystals[J]. Mol Pharm, 2017, 14:2350-2358.
[71] Putra OD, Umeda D, Nugraha YP, et al. Solubility improvement of epalrestat by layered structure formation via cocrystallization[J]. CrystEngComm, 2017, 19:2614-2622.
[72] Peng B, He HY, Li MQ, et al. Comparison of the crystal structures and physicochemical properties of novel resveratrol cocrystals[J]. Acta Crystallogr B, 2019, 75:1186-1196.
[73] Saha S, Desiraju GR. Acid···amide supramolecular synthon in cocrystals:from spectroscopic detection to property engineering[J]. J Am Chem Soc, 2018, 140:6361-6373.
[74] Chadha R, Singh P, Khullar S, et al. Ciprofloxacin hippurate salt:crystallization tactics, structural aspects, and biopharmaceutical performance[J]. Cryst Growth Des, 2016, 16:4960-4967.
[75] Peng B, Zhang ZY, Wang JR, et al. Confocal Raman micro-spectral evidence and physicochemical evaluation of triamterene salts[J]. Analyst, 2019, 144:530-535.
[76] Hiendrawan S, Widjojokusumo E, Veriansyah B, et al. Pharmaceutical salts of carvedilol:polymorphism and physicochemical properties[J]. AAPS PharmSciTech, 2017, 18:1417-1425.
[77] Elbagerma MA, Edwards HGM, Munshi T, et al. Characterization of new cocrystals by Raman spectroscopy, powder x-ray diffraction, differential scanning calorimetry, and transmission Raman spectroscopy[J]. Cryst Growth Des, 2010, 10:2360-2371.
[78] Peng B, Wang JR, Mei XF. Triamterene-furosemide salt:structural aspects and physicochemical evaluation[J]. Acta Crystallogr B, 2018, 74:738-741.
[79] Garbacz P, Wesolowski M. Benzodiazepines co-crystals screening using FTIR and Raman spectroscopy supported by differential scanning calorimetry[J]. Spectrochim Acta A, 2020, 234:118242.
[80] Garbacz P, Paukszta D, Sikorski A, et al. Structural characterization of co-crystals of chlordiazepoxide with p-aminobenzoic acid and lorazepam with nicotinamide by DSC, X-ray diffraction, FTIR and Raman spectroscopy[J]. Pharmaceutics, 2020, 12:648.
[81] Fernandes RP,do Nascimento ALCS, Carvalho ACS, et al. Mechanochemical synthesis, characterization, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid[J]. J Therm Anal Calorim, 2019, 138:765-777.
[82] Bhandaru JS, Malothu N, Akkinepally RR. Characterization and solubility studies of pharmaceutical cocrystals of eprosartan mesylate[J]. Cryst Growth Des, 2015, 15:1173-1179.
[83] Maheux CR, Copeland CR. Chemical analysis of two new designer drugs:buphedrone and pentedrone[J]. Drug Test Anal, 2012, 4:17-23.
相关文献:
1.刘 毅, 黄海伟, 吴建敏, 施亚琴, 杨腊虎.硫酸氢氯吡格雷多晶型研究[J]. 药学学报, 2013,48(8): 1358-1360
2.王晋;张汝华;孙淑英.尼莫地平多晶型的研究[J]. 药学学报, 1995,30(6): 443-448