药学学报, 2021, 56(1): 146-157
引用本文:
宣婧婧, 武喜营, 戚建平, 庄婕. 天然低共熔溶剂在药剂学中的应用[J]. 药学学报, 2021, 56(1): 146-157.
XUAN Jing-jing, WU Xi-ying, Qi Jian-ping, ZHUANG Jie. Application of natural deep eutectic solvents in pharmaceutics[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 146-157.

天然低共熔溶剂在药剂学中的应用
宣婧婧1,2, 武喜营3, 戚建平4, 庄婕2,5
1. 上海中医药大学研究生院, 上海 201203;
2. 上海健康医学院药学院, 上海 201318;
3. 上海皮肤病医院, 上海 200443;
4. 复旦大学药学院, 上海 201203;
5. 上海中医药大学, 上海 201203
摘要:
天然低共熔溶剂是一种由生物相容性好的天然物质作为氢键供体和受体所构成的低共熔溶剂,如胆碱、氨基酸和糖等,具有低成本、易制备及环境友好等优点,已在许多领域中有着广泛的应用。由于其生物相容性好,使用较为安全,特别适用于医药领域。本文首先从天然低共熔溶剂的形成原理出发,对目前所采用的分子模拟设计方法进行了综述;然后对目前天然低共熔溶剂所使用材料和制备方法进行了总结,并阐述了其理化性质;最后对其目前在药剂学中的应用进行了总结,包括增加药物溶解度、促进药物渗透性、促进药物口服吸收等,并对其在药剂学中的应用前景进行展望。
关键词:    天然低共熔溶剂      离子液体      增溶      促渗      药物低共熔物     
Application of natural deep eutectic solvents in pharmaceutics
XUAN Jing-jing1,2, WU Xi-ying3, Qi Jian-ping4, ZHUANG Jie2,5
1. Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
2. School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
3. Shanghai Dermatology Hospital, Shanghai 200443, China;
4. School of Pharmacy, Fudan University, Shanghai 201203, China;
5. Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Abstract:
Natural deep eutectic solvent (NDES) is a kind of deep eutectic solvents (DESs) which is composed of natural substances with good biocompatibility. Those substances can function as hydrogen bond donor and acceptor, such as choline, amino acids, sugars, etc. NDES have been widely used in many fields due to their advantages of low cost, easy preparation and environmental friendliness. It is especially suitable for the pharmaceutical industry because of its good biocompatibility and safety for use. In this paper, we firstly review the molecular simulation methods for current design of DESs from the formation principle. And then, the materials and preparation of NDES are reviewed and the physicochemical properties are further described. Finally, we review the current application of NDES in pharmaceutics including increasing drug solubility, promoting drug permeability and enhancing oral drug absorption, and meanwhile their future applications in pharmaceutics were also prospected.
Key words:    natural deep eutectic solvent    ionic liquid    increasing solubility    enhancing permeation    drug eutectic   
收稿日期: 2020-07-09
DOI: 10.16438/j.0513-4870.2020-1148
通讯作者: 庄婕,Tel:86-21-65883519,E-mail:zhuangj@sumhs.edu.cn
Email: zhuangj@sumhs.edu.cn
相关功能
PDF(1084KB) Free
打印本文
0
作者相关文章
宣婧婧  在本刊中的所有文章
武喜营  在本刊中的所有文章
戚建平  在本刊中的所有文章
庄婕  在本刊中的所有文章

参考文献:
[1] Cao J, Wu R, Dong Q, et al. Effective release of intracellular enzymes by permeating the cell membrane with hydrophobic deep eutectic solvents[J]. ChemBioChem, 2020, 21:672-680.
[2] Francisco M, van den Bruinhorst A, Kroon MC. Low-transition-temperature mixtures (LTTMs):a new generation of designer solvents[J]. Angew Chem Int Ed Engl, 2013, 52:3074-3085.
[3] Kudłak B, Owczarek K, Namieśnik J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents-a review[J]. Environ Sci Pollut Res, 2015, 22:11975-11992.
[4] Egorova KS, Gordeev EG, Ananikov VP. Biological activity of ionic liquids and their application in pharmaceutics and medicine[J]. Chem Rev, 2017, 117:7132-7189.
[5] Clark JH, Farmer TJ, Hunt AJ, et al. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources[J]. Int J Mol Sci, 2015, 16:17101-17159.
[6] Dai YT, van Spronsen J, Witkamp GJ, et al. Ionic liquids and deep eutectic solvents in natural products research:mixtures of solids as extraction solvents[J]. J Nat Prod, 2013, 76:2162-2173.
[7] Cao JP, Mou YX, Chen YY, et al. Applications of ionic liquids in drug research[J]. Acta Pharm Sin (药学学报), 2019, 54:245-257.
[8] Paschoal VH, Faria LFO, Ribeiro MCC. Vibrational spectroscopy of ionic liquids[J]. Chem Rev, 2017, 117:7053-7112.
[9] Deetlefs M, Seddon KR. Assessing the greenness of some typical laboratory ionic liquid preparations[J]. Green Chem, 2010, 12:17-30.
[10] Qin H, Hu XT, Wang JW, et al. Overview of acidic deep eutectic solvents on synthesis, properties and applications[J]. Green Energy Environ, 2020, 5:8-21.
[11] Makoś P, Słupek E, Gębicki J. Hydrophobic deep eutectic solvents in microextraction techniques-a review[J]. Microchem J, 2020, 152:104384.
[12] Sheldon RA. Green solvents for sustainable organic synthesis:state of the art[J]. Green Chem, 2005, 7:267-278.
[13] Radosevic K, Bubalo MC, Srcek VG, et al. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents[J]. Ecotoxicol Environ Saf, 2015, 112:46-53.
[14] Xie Y, Dong H, Zhang S, et al. Solubilities of CO2, CH4, H2, CO and N2 in choline chloride/urea[J]. Green Energy Environ, 2016, 1:195-200.
[15] Abbott AP, Capper G, Davies DL, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chem Commun (Camb), 2003, 9:70-71.
[16] Zhang Q, De Oliveira Vigier K, Royer S, et al. Deep eutectic solvents:syntheses, properties and applications[J]. Chem Soc Rev, 2012, 41:7108-7146.
[17] Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications[J]. Chem Rev, 2014, 114:11060-11082.
[18] Mbous YP, Hayyan M, Hayyan A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering-promises and challenges[J]. Biotechnol Adv, 2017, 35:105-134.
[19] Sun H, Li Y, Wu X, et al. Theoretical study on the structures and properties of mixtures of urea and choline chloride[J]. J Mol Model, 2013, 19:2433-2441.
[20] Perkins SL, Painter P, Colina CM. Molecular dynamic simulations and vibrational analysis of an ionic liquid analogue[J]. J Phys Chem B, 2013, 117:10250-10260.
[21] Perkins SL, Painter P, Colina CM. Experimental and computational studies of choline chloride-based deep eutectic solvents[J]. J Chem Eng Data, 2014, 59:3652-3662.
[22] Alkhatib Ⅲ, Bahamon D, Llovell F, et al. Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents[J]. J Mol Liq, 2019, 298:112183.
[23] Haerens K, Matthijs E, Binnemansc K, et al. Electrochemical decomposition of choline chloride based ionic liquid analogues[J]. Green Chem, 2009, 11:1357-1365.
[24] Abbott AP, McKenzie KJ. Application of ionic liquids to the electrodeposition of metals[J]. Phys Chem Chem Phys, 2006, 8:4265-4279.
[25] Zhao BY, Xu P, Yang FX, et al. Biocompatible deep eutectic solvents based on choline chloride:characterization and application to the extraction of rutin from Sophora japonica[J]. ACS Sustainable Chem Eng, 2015, 3:2746-2755.
[26] Xu GC, Ding JC, Han RZ, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresour Technol, 2016, 203:364-369.
[27] Choi YH, van Spronsen J, Dai Y, et al. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology?[J]. Plant Physiol, 2011, 156:1701-1705.
[28] Gorke JT, Srienc F, Kazlauskas RJ. Hydrolase-catalyzed biotransformations in deep eutectic solvents[J]. Chem Commun, 2008, 10:1235-1237.
[29] Imperato G, Eibler E, Niedermaier J, et al. Low-melting sugar-urea-salt mixtures as solvents for Diels-Alder reactions[J]. Chem Commun (Camb), 2005, (9):1170-1172.
[30] Poletti L, Chiappe C, Lay L, et al. Glucose-derived ionic liquids:exploring low-cost sources for novel chiral solvents[J]. Green Chem, 2007, 9:337-341.
[31] Gore S, Baskaran S, Koenig B. Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid-urea mixtures[J]. Green Chem, 2011, 13:1009-1013.
[32] Abbott AP, Boothby D, Capper G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids[J]. J Am Chem Soc, 2004, 126:9142-9147.
[33] Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids[J]. J Am Chem Soc, 2005, 127:2398-2399.
[34] Dai YT, van Spronsen J, Witkamp GJ, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Anal Chim Acta, 2013, 766:61-68.
[35] Faggian M, Sut S, Perissutti B, et al. Natural deep eutectic solvents (NADEs) as a tool for bioavailability improvement:pharmacokinetics of rutin dissolved in proline/glycine after oral administration in rats:possible application in nutraceuticals[J]. Molecules, 2016, 21:1531.
[36] Durand E, Lecomte J, Baréa B, et al. Evaluation of deep eutectic solvent-water binary mixtures for lipase-catalyzed lipophilization of phenolic acids[J]. Green Chem, 2013, 15:2275-2282.
[37] Gutierrez MC, Ferrer ML, Yuste L, et al. Bacteria incorporation in deep-eutectic solvents through freeze-drying[J]. Angew Chem Int Ed Engl, 2010, 49:2158-2162.
[38] Francisco M, van den Bruinhorst A, Kroon MC. New natural and renewable low transition temperature mixtures (LTTMs):screening as solvents for lignocellulosic biomass processing[J]. Green Chem, 2012, 14:2153-2157.
[39] Dai Y, Verpoorte R, Choi YH. Natural deep eutectic solvents providing enhanced stability of natural colorants from safflower (Carthamus tinctorius)[J]. Food Chem, 2014, 159:116-121.
[40] Gu T, Zhang M, Tan T, et al. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil[J]. Chem Commun (Camb), 2014, 50:11749-11752.
[41] Duan L, Dou LL, Guo L, et al. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products[J]. ACS Sustainable Chem Eng, 2016, 4:2405-2411.
[42] Bakirtzi C, Triantafyllidou K, Makris DP. Novel lactic acid-based natural deep eutectic solvents:efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native greek medicinal plants[J]. J Applied Res Med Aromatic Plants, 2016, 3:120-127.
[43] Erlund I, Kosonen T, Alfthan G, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers[J]. Eur J Clin Pharmacol, 2000, 56:545-553.
[44] Li Z, Lee PI. Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives[J]. Int J Pharm, 2016, 505:283-288.
[45] Radosevic K, Curko N, Srcek VG, et al. Natural deep eutectic solvents as beneficial extractants for enhancement of plant extracts bioactivity[J]. Food Sci Technol, 2016, 73:45-51.
[46] Li Y, Wu X, Zhu Q, et al. Improving the hypoglycemic effect of insulin via the nasal administration of deep eutectic solvents[J]. Int J Pharm, 2019, 569:118584.
[47] Wu X, Chen Z, Li Y, et al. Improving dermal delivery of hydrophilic macromolecules by biocompatible ionic liquid based on choline and malic acid[J]. Int J Pharm, 2019, 558:380-387.
[48] Dai YT, Witkamp GJ, Verpoorte R, et al. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications[J]. Food Chem, 2015, 187:14-19.
[49] Espino M, Fernández MdlÁ, Gomez FJV, et al. Natural designer solvents for greening analytical chemistry[J]. Trends Anal Chem, 2016, 76:126-136.
[50] Liu Y, Friesen JB, McAlpine JB, et al. Natural deep eutectic solvents:properties, applications, and perspectives[J]. J Nat Prod, 2019, 81:679-690.
[51] Tomé LIN, Baião V, Silva Wd, et al. Deep eutectic solvents for the production and application of new materials[J]. Appl Mater Today, 2018, 10:30-50.
[52] Florindo C, Lima F, Ribeiro BD, et al. Deep eutectic solvents:overcoming 21st century challenges[J]. Green Sustainable Chem, 2019, 18:31-36.
[53] Shekaari H, Zafarani-Moattar MT, Shayanfar A, et al. Effect of choline chloride/ethylene glycol or glycerol as deep eutecticsolvents on the solubility and thermodynamic propertiesof acetaminophen[J]. J Mol Liq, 2018, 249:1222-1235.
[54] Cysewski P, Jeliński T. Optimization, thermodynamic characteristics and solubility predictions of natural deep eutectic solvents used for sulfonamide dissolution[J]. Int J Pharm, 2019. DOI:10.1016/j.ijpharm.2019.118682.
[55] deCastilla AG, Bittner JP, Müller S, et al. Thermodynamic and transport properties modeling of deep eutectic solvents:a review on gE-models, equations of state, and molecular dynamics[J]. J Chem Eng Data, 2020, 65:943-967.
[56] Hizaddin HF, Ramalingam A, Hashim MA, et al. Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents[J]. J Chem Eng Data, 2014, 59:3470-3487.
[57] Xu HF, Peng JJ, Song XM, et al. Review of molecular simulationof deep eutectic solvents[J]. J Qilu Univ Technol (齐鲁工业大学学报:自然科学版), 2019, 33:1-9.
[58] Zhang Y, Ji X, Lu X. Choline-based deep eutectic solvents for CO2 separation:review and thermodynamic analysis[J]. Renewable Sustainable Energy Rev, 2018, 97:436-455.
[59] Wagle DV, Adhikari L, Baker GA. Computational perspectives on structure, dynamics, gas sorption, and bio-interactions in deep eutectic solvents[J]. Fluid Phase Equilib, 2017, 448:50-58.
[60] Altamash T, Atilhan M, Aliyan A, et al. Insights into choline chloride-phenylacetic acid deep eutectic solvent for CO2 absorption[J]. RSC Adv, 2016, 6:109201-109210.
[61] Ma C, Laaksonen A, Liu C, et al. The peculiar effect of water on ionic liquids and deep eutectic solvents[J]. Chem Soc Rev, 2018, 47:8685-8720.
[62] Triolo A, Lo Celso F, Russina O. Structural features of beta-cyclodextrin solvation in the deep eutectic solvent, reline[J]. J Phys Chem B, 2020, 124:2652-2660.
[63] Pal S, Paul S. Understanding the role of reline, a natural des, on temperature-induced conformational changes of c-kit G-quadruplex DNA:a molecular dynamics study[J]. J Phys Chem B, 2020, 124:3123-3136.
[64] Altamash T, Nasser MS, Elhamarnah Y, et al. Gas solubility and rheological behavior of natural deep eutectic solvents (NADEs) via combined experimental and molecular simulation techniques[J]. Chemistryselect, 2017, 2:7278-7295.
[65] Bezold F, Weinberger ME, Minceva M. Assessing solute partitioning in deep eutectic solvent-based biphasic systems using the predictive thermodynamic model COSMO-RS[J]. Fluid Phase Equilib, 2017, 437:23-33.
[66] Mahanta U, Choudhury S, Venkatesh RP, et al. Ionic-liquid-based deep eutectic solvents as novel electrolytes for supercapa-citors:COSMO-SAC predictions, synthesis, and characterization[J]. ACS Sustainable Chem Eng, 2020, 8:372-381.
[67] Cheng H, Liu C, Zhang J, et al. Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model[J]. Chem Eng Process, 2018, 125:246-252.
[68] Klamt A. Conductor-like screening model for real solvents:a new approach to the quantitative calculation of solvation phenomena[J]. J Phys Chem, 1995, 99:2224-2235.
[69] Klamt A, Eckert F. COSMO-RS:a novel and efficient method for the a priori prediction of thermophysical data of liquids[J]. Fluid Phase Equilib, 2000, 172:43-72.
[70] Liu X, Xu D, Diao B, et al. Separation of dimethyl carbonate and methanol by deep eutectic solvents:liquid-liquid equilibrium measurements and thermodynamic modeling[J]. J Chem Eng Data, 2018, 63:1234-1239.
[71] Vega LF, Vilaseca O, Llovell F, et al. Modeling ionic liquids and the solubility of gases in them:recent advances and perspectives[J]. Fluid Phase Equilib, 2010, 294:15-30.
[72] Abranches DO, Larriba M, Silva LP, et al. Using COSMO-RS to design choline chloride pharmaceutical eutectic solvents[J]. Fluid Phase Equilib, 2019, 497:71-78.
[73] Jelinski T, Cysewski P. Application of a computational model of natural deep eutectic solvents utilizing the COSMO-RS approach for screening of solvents with high solubility of rutin[J]. J Mol Model, 2018, 24:180.
[74] Aissaoui T, AlNashef IM, Benguerba Y. Dehydration of natural gas using choline chloride based deep eutectic solvents:COSMO-RS prediction[J]. J Nat Gas Sci Eng, 2016, 30:571-577.
[75] Silva LP, Fernandez L, Conceição JHF, et al. Design and characterization of sugar-based deep eutectic solvents using conductor-like screening model for real solvents[J]. ACS Sustainable Chem Eng, 2018, 6:10724-10734.
[76] Kamgar A, Mohsenpour S, Esmaeilzadeh F. Solubility prediction of CO2, CH4, H2, CO and N2 in choline chloride/urea as a eutectic solvent using NRTL and COSMO-RS models[J]. J Mol Liq, 2017, 247:70-74.
[77] Roda A, Santos F, Matias AA, et al. Design and processing of drug delivery formulations of therapeutic deep eutectic systems for tuberculosis[J]. J Supercrit Fluids, 2020, 161:104826.
[78] Achkar TE, Fourmentin S, Greige-Gerges H. Deep eutectic solvents:an overview on their interactions with water and biochemical compounds[J]. J Mol Liq, 2019, 288:111028.
[79] Gajardo-Parra NF, Lubben MJ, Winnert JM, et al. Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol[J]. J Chem Thermodyn, 2019, 133:272-284.
[80] Wikene KO, Rukke HV, Bruzell E, et al. Physicochemical characterisation and antimicrobial phototoxicity of an anionic porphyrin in natural deep eutectic solvents[J]. Eur J Pharm Biopharm, 2016, 105:75-84.
[81] Liu Y, Zhang Y, Chen SN, et al. The influence of natural deep eutectic solvents on bioactive natural products:studying interactions between a hydrogel model and Schisandra chinensis metabolites[J]. Fitoterapia, 2018, 127:212-219.
[82] Wikene KO, Bruzell E, Tonnesen HH. Improved antibacterial phototoxicity of a neutral porphyrin in natural deep eutectic solvents[J]. J Photochem Photobiol B, 2015, 148:188-196.
[83] Jeong KM, Zhao J, Jin Y, et al. Highly efficient extraction of anthocyanins from grape skin using deep eutectic solvents as green and tunable media[J]. Arch Pharm Res, 2015, 38:2143-2152.
[84] Sahin S. Tailor-designed deep eutectic liquids as a sustainable extraction media:an alternative to ionic liquids[J]. J Pharm Biomed Anal, 2019, 174:324-329.
[85] Gutierrez MC, Ferrer ML, Mateo CR, et al. Freeze-drying of aqueous solutions of deep eutectic solvents:a suitable approach to deep eutectic suspensions of self-assembled structures[J]. Langmuir, 2009, 25:5509-5515.
[86] Abbott AP, Capper G, Davies DL, et al. Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chem Commun (Camb), 2001, (19):2010-2011.
[87] Satlewal A, Agrawal R, Bhagia S, et al. Natural deep eutectic solvents for lignocellulosic biomass pretreatment:recent developments, challenges and novel opportunities[J]. Biotechnol Adv, 2018, 36:2032-2050.
[88] Zainal-Abidin MH, Hayyan M, Hayyan A, et al. New horizons in the extraction of bioactive compounds using deep eutectic solvents:a review[J]. Anal Chim Acta, 2017, 979:1-23.
[89] Du C, Zhao B, Chen XB, et al. Effect of water presence on choline chloride-2 urea ionic liquid and coating platings from the hydrated ionic liquid[J]. Sci Rep, 2016, 6:29225.
[90] Shah D, Mjalli FS. Effect of water on the thermo-physical properties of reline:an experimental and molecular simulation based approach[J]. Phys Chem Chem Phys, 2014, 16:23900-23907.
[91] Ru J, Bu J, Wang Z. Effect of temperature on viscosity and conductivity of choline chloride-urea-sb2s3 system[J]. Technol Innov Appl (科技创新与应用), 2019, (18):75-76.
[92] Abbott AP, Capper G, Gray S. Design of improved deep eutectic solvents using hole theory[J]. ChemPhysChem, 2006, 7:803-806.
[93] Vigier KD, Chatel G, Jerome F. Contribution of deep eutectic solvents for biomass processing:opportunities, challenges, and limitations[J]. ChemCatChem, 2015, 7:1250-1260.
[94] Garcia G, Aparicio S, Ullah R, et al. Deep eutectic solvents:physicochemical properties and gas separation applications[J]. Energy Fuels, 2015, 29:2616-2644.
[95] Hayyan A, Mjalli FS, AlNashef IM, et al. Glucose-based deep eutectic solvents:physical properties[J]. J Mol Liq, 2013, 178:137-141.
[96] Alomar MK, Hayyan M, Alsaadi MA, et al. Glycerol-based deep eutectic solvents:physical properties[J]. J Mol Liq, 2016, 215:98-103.
[97] Abbott AP, Harris RC, Ryder KS. Application of hole theory to define ionic liquids by their transport properties[J]. J Phys Chem B, 2007, 111:4910-4913.
[98] Aroso IM, Silva JC, Mano F, et al. Dissolution enhancement of active pharmaceutical ingredients by therapeutic deep eutectic systems[J]. Eur J Pharm Biopharm, 2016, 98:57-66.
[99] Paiva A, Craveiro R, Aroso I, et al. Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chem Eng, 2014, 2:1063-1071.
[100] Nerurkar J, Beach JW, Park MO, et al. Solubility of (+/-)-ibuprofen and s (+/-)-ibuprofen in the presence of cosolvents and cyclodextrins[J]. Pharm Dev Technol, 2005, 10:413-421.
[101] Jelinski T, Przybylek M, Cysewski P. Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems:experimental and theoretical investigations[J]. Drug Dev Ind Pharm, 2019, 45:1120-1129.
[102] Liu Y, Garzon J, Friesen JB, et al. Countercurrent assisted quantitative recovery of metabolites from plant-associated natural deep eutectic solvents[J]. Fitoterapia, 2016, 112:30-37.
[103] Durand E, Lecomte J, Upasani R, et al. Evaluation of the ROS inhibiting activity and mitochondrial targeting of phenolic compounds in fibroblast cells model system and enhancement of efficiency by natural deep eutectic solvent (NADEs) formulation[J]. Pharm Res, 2017, 34:1134-1146.
[104] Lu C, Cao J, Wanga N, et al. Significantly improving the solubility of nonsteroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration[J]. Med Chem Commun, 2016, 7:955-959.
[105] Morrison HG, Sun CC, Neervannan S. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles[J]. Int J Pharm, 2009, 378:136-139.
[106] Gutierrez A, Aparicio S, Atilhan M. Design of arginine-based therapeutic deep eutectic solvents as drug solubilization vehicles for active pharmaceutical ingredients[J]. Phys Chem Chem Phys, 2019, 21:10621-10634.
[107] Gutierrez A, Atilhan M, Aparicio S. A theoretical study on lidocaine solubility in deep eutectic solvents[J]. Phys Chem Chem Phys, 2018, 20:27464-27473.
[108] Olivares B, Martínez F, Rivas L, et al. A natural deep eutectic solvent formulated to stabilize β-lactam antibiotics[J]. Sci Rep, 2018, 8:14900.
[109] Pedro SN, Freire MG, Freire CSR, et al. Deep eutectic solvents comprising active pharmaceutical ingredients in the development of drug delivery systems[J]. Expert Opin Drug Deliv, 2019, 16:497-506.
[110] Araya-Sibaja AM, Vega-Baudrit JR, Guillén-Girón T, et al. Drug solubility enhancement through the preparation of multicomponent organic materials:eutectics of lovastatin with carboxylic acids[J]. Pharmaceutics, 2019, 11:112-128.
[111] Kharat M, Du Z, Zhang G, et al. Physical and chemical stability of curcumin in aqueous solutions and emulsions:impact of pH, temperature, and molecular environment[J]. J Agric Food Chem, 2017, 65:1525-1532.
[112] Abdel‑Hafez SM, Hathout RM, Sammour OA. Attempts to enhance the anti‑cancer activity of curcumin as a magical oncological agent using transdermal delivery[J]. Adv Tradit Med, 2020. DOI:10.1007/s13596-020-00439-5.
[113] Goud NR, Suresh K, Sanphui P, et al. Fast dissolving eutectic compositions of curcumin[J]. Int J Pharm, 2012, 439:63-72.
[114] Jelinski T, Przybylek M, Cysewski P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin[J]. Pharm Res, 2019, 36:116.
[115] Wikene KO, Bruzell E, Tonnesen HH. Characterization and antimicrobial phototoxicity of curcumin dissolved in natural deep eutectic solvents[J]. Eur J Pharm Sci, 2015, 80:26-32.
[116] Blessy M, Patel RD, Prajapati PN, et al. Development of forced degradation and stability indicating studies of drugs-a review[J]. J Pharm Anal, 2014, 4:159-165.
[117] Chen J, Li SF, Yao ZF, et al. Improved stability of salvianolic acid B from Radix Salviae miltiorrhizae in deep eutectic solvents[J]. Anal Methods, 2016, 8:2502-2509.
[118] Adawiyah N, Moniruzzaman M, Hawatulailaa S, et al. Ionic liquids as a potential tool for drug delivery systems[J]. MedChemComm, 2016, 7:1881-1897.
[119] Zakrewsky M, Lovejoy KS, Kern TL, et al. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization[J]. Proc Natl Acad Sci U S A, 2014, 111:13313-13318.
[120] Stott PW, Williams AC, Barry BW. Transdermal delivery from eutectic systems:enhanced permeation of a model drug, ibuprofen[J]. J Control Release, 1998, 50:297-308.
[121] Qu W, Hakkinen R, Allen J, et al. Globular and fibrous proteins modified with deep eutectic solvents:materials for drug delivery[J]. Molecules, 2019, 24:3583.
[122] Berton P, Di Bona KR, Yancey D, et al. Transdermal bioavailability in rats of lidocaine in the forms of ionic liquids, salts, and deep eutectic[J]. ACS Med Chem Lett, 2017, 8:498-503.
[123] Tasli H, Yurekli A, Gokgoz MC, et al. Effects of oral isotretinoin therapy on the nasal cavities[J]. Braz J Otorhinolaryngol, 2020, 86:99-104.
[124] Woensel MV,Wauthoz N, Rosière R, et al. Formulations for intranasal delivery of pharmacological agents to combat brain disease:a new opportunity to tackle gbm?[J]. Cancers (Basel), 2013, 5:1020-1048.
[125] Lobaina Mato Y. Nasal route for vaccine and drug delivery:features and current opportunities[J]. Int J Pharm, 2019, 572:118813.
[126] Khan AR, Liu M, Khan MW, et al. Progress in brain targeting drug delivery system by nasal route[J]. J Control Release, 2017, 268:364-389.
[127] Wang B, Liu HR, Chen F, et al. Progress in pharmacokinetics of oral transmucosal drug delivery systems[J]. Acta Pharm Sin (药学学报), 2020, 55:226-234.
[128] Liu CS, Zheng YR, Zhang YF, et al. Research progress on berberine with a special focus on its oral bioavailability[J]. Fitoterapia, 2016, 109:274-282.
[129] Sut S, Faggian M, Baldan V, et al. Natural deep eutectic solvents (NADEs) to enhance berberine absorption:an in vivo pharmacokinetic study[J]. Molecules, 2017, 22:1921.
[130] Chen J, Wang Q, Liu M, et al. The effect of deep eutectic solvent on the pharmacokinetics of salvianolic acid B in rats and its acute toxicity test[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1063:60-66.
[131] Stoimenovski J, MacFarlane DR, Bica K, et al. Crystalline vs ionic liquid salt forms of active pharmaceutical ingredients:a position paper[J]. Pharm Res, 2010, 27:521-526.
[132] Abbott AP, Ahmed EI, Prasad K, et al. Liquid pharmaceuticals formulation by eutectic formation[J]. Fluid Phase Equilib, 2017, 448:2-8.
[133] Ferraz R, Branco LC, Prudêncio C, et al. Ionic liquids as active pharmaceutical ingredients[J]. ChemMedChem, 2011, 6:975-985.
[134] Marrucho IM, Branco LC, Rebelo LPN. Ionic liquids in pharmaceutical applications[J]. Annu Rev Chem Biomol Eng, 2014, 5:527-546.
[135] Stella VJ. Prodrugs:some thoughts and current issues[J]. J Pharm Sci, 2010, 99:4755-4765.
[136] Huttunen KM, Raunio H, Rautio J. Prodrugs-from serendipity to rational design[J]. Pharmacol Rev, 2011, 63:750-771.
[137] Banerjee R, Bhatt PM, Ravindra NV, et al. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities[J]. Cryst Growth Des, 2005, 5:2299-2309.
[138] Serajuddin ATM. Salt formation to improve drug solubility[J]. Adv Drug Deliv Rev, 2007, 59:603-616.
[139] Berge SM, Bighley LD, Monkhouse DC. Pharmaceutical salts[J]. J Pharm Sci, 1977, 66:1-19.
[140] Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, salts, and cocrystals:what's in a name?[J]. Cryst Growth Des, 2012, 12:2147-2152.
[141] Dean PM, Turanjanin J, Yoshizawa-Fujita M, et al. Exploring an anti-crystal engineering approach to the preparation of pharmaceutically active ionic liquids[J]. Cryst Growth Des, 2009, 9:1137-1145.
[142] Elder DP, Holm R, de Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility[J]. Int J Pharm, 2013, 453:88-100.
[143] Childs SL, Chyall LJ, Dunlap JT, et al. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids[J]. J Am Chem Soc, 2004, 126:13335-13342.
[144] Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions[J]. Eur J Pharm Biopharm, 2000, 50:47-60.
[145] Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs[J]. Drug Discov Today, 2007, 12:1068-1075.
[146] Torchilin VP. Recent advances with liposomes as pharmaceutical carriers[J]. Nat Rev Drug Discov, 2005, 4:145-160.
[147] Tarate B, Bansal AK. Characterization of CoQ 10-lauric acid eutectic system[J]. Thermochim Acta, 2015, 605:100-106.
[148] Mota-Morales JD, Gutiérrez MC, Ferrer ML, et al. Deep eutectic solvents as both active fillers and monomers for frontal polymerization[J]. J Polym Sci Part A Polym Chem, 2013, 51:1767-1773.
[149] Phaechamud T, Tuntarawongsa S, Charoensuksai P. Evaporation behavior and characterization of eutectic solvent and ibuprofen eutectic solution[J]. AAPS PharmSciTech, 2016, 17:1213-1220.
[150] Alvarez MS, Zhang YF. Sketching neoteric solvents for boosting drugs bioavailability[J]. J Control Release, 2019, 311:225-232.
[151] Nazzal S, Smalyukh Ⅱ, Lavrentovich OD, et al. Preparation and in vitro characterization of a eutectic based semisolid self-nanoemulsified drug delivery system (SNEDDs) of ubiquinone:mechanism and progress of emulsion formation[J]. Int J Pharm, 2002, 235:247-265.
[152] Wang WP, Cai YQ, Liu YH, et al. Microemulsions based on paeonol-menthol eutectic mixture for enhanced transdermal delivery:formulation development and in vitro evaluation[J]. Artif Cells Nanomed Biotechnol, 2017, 45:1241-1246.
[153] Aroso IM, Craveiroc R, Â Rochad, et al. Design of controlled release systems for thedes-therapeutic deep eutectic solvents, using supercritical fluid technology[J]. Int J Pharm, 2015, 492:73-79.
[154] Duarte ARC, Ferreira ASD, Barreiros S, et al. A comparison between pure active pharmaceutical ingredients and therapeutic deep eutectic solvents:solubility and permeability studies[J]. Eur J Pharm Biopharm, 2017, 114:296-304.
[155] Tuntarawongsa S, Phaechamud T. Polymeric eutectic system[J]. Adv Mater Res, 2012, 528:180-183.
[156] Serrano MC, Gutierrez MC, Jimenez R, et al. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents[J]. Chem Commun, 2012, 48:579-581.
[157] Mano F, Martins M, Sá-Nogueira I, et al. Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatin[J]. AAPS PharmSciTech, 2017, 18:2579-2585.