药学学报, 2021, 56(1): 231-243
引用本文:
李志雄, 肖光旭, 贺爽, 王焕义, 朱彦. 银杏总黄酮与银杏总内酯对亚急性期卒中小鼠神经功能恢复促进作用的比较研究[J]. 药学学报, 2021, 56(1): 231-243.
LI Zhi-xiong, XIAO Guang-xu, HE Shuang, WANG Huan-yi, ZHU Yan. Comparative study on the effects of total ginkgo flavonol glycosides and total ginkgolides on neurofunctional recovery in mice with subacute stroke[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 231-243.

银杏总黄酮与银杏总内酯对亚急性期卒中小鼠神经功能恢复促进作用的比较研究
李志雄1,2, 肖光旭1,2, 贺爽1,2, 王焕义1,2, 朱彦1,2
1. 天津中医药大学, 组分中药国家重点实验室, 天津 301617;
2. 天津国际生物医药联合研究院, 中药新药研发中心, 天津 300457
摘要:
舒血宁注射液作为一种银杏叶提取物制剂,在脑卒中急性期和亚急性期防治上表现出独特优势,但其主要活性部位尚不明晰。本研究旨在基于前期构建的小鼠脑卒中亚急性期模型,进一步探讨舒血宁的两个主要组分银杏总黄酮和银杏总内酯对促进脑卒中小鼠神经功能恢复的贡献度及作用机制。主要通过神经及行为学变化、脑梗死体积、血脑屏障渗透和脑水肿进行药效评价,结合转录组和网络药理学进行通路和靶标预测,最后在mRNA和蛋白水平进行机制验证。结果显示,在药效评价和粒细胞集落刺激因子(granulocyte colony-stimulating factor,G-CSF)、巨噬细胞分化抗原1(macrophage-1 antigen,MAC-1)和E选择素参与的粒细胞黏附与浸润的调节机制中,银杏总内酯的作用均优于银杏总黄酮,提示舒血宁注射液可能主要通过银杏总内酯组分下调G-CSF介导的粒细胞黏附与浸润通路来改善亚急性期卒中小鼠的预后。这一发现有望为优化处方和寻找靶向治疗缺血性脑卒中预后的天然药物提供参考。本研究动物实验过程遵循天津中医药大学动物伦理委员会的规定。
关键词:    舒血宁注射液      银杏总黄酮      银杏总内酯      缺血性脑卒中      粒细胞集落刺激因子     
Comparative study on the effects of total ginkgo flavonol glycosides and total ginkgolides on neurofunctional recovery in mice with subacute stroke
LI Zhi-xiong1,2, XIAO Guang-xu1,2, HE Shuang1,2, WANG Huan-yi1,2, ZHU Yan1,2
1. State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
2. Chinese Medicine New Drug Research and Development Center, Tianjin International Biomedical Research Institute, Tianjin 300457, China
Abstract:
As a Ginkgo biloba extract preparation, shuxuening injection has a unique advantage in the prevention and treatment of acute and subacute stroke, but its main active ingredient is still unclear. Using a subacute model of stroke in mice constructed earlier, we further explored the contribution and mechanism of the two main components of total ginkgo flavonol glycosides and total ginkgolides in facilitating the neurofunctional recovery in stroke-induced mice. The pharmacodynamics was mainly evaluated by neurobehavioral changes, cerebral infarction volume, blood-brain barrier permeability and brain edema. The pathway and targets were predicted by transcriptome and network pharmacology. Finally, the mechanism was verified at the mRNA and protein levels. The results showed that the beneficial effect of total ginkgolides was greater than that of total ginkgo flavonol glycosides in both the pharmacodynamics and the regulatory mechanism of granulocyte adhesion and diapedesis involving granulocyte colony-stimulating factor (G-CSF), macrophage-1 antigen (MAC-1) and E-selectin. These findings suggest that shuxuening injection may improve the prognosis for mice with subacute stroke by down-regulating G-CSF-mediated granulocyte adhesion and diapedesis pathway mainly through the total ginkgolide components. This finding is expected to provide reference for optimizing prescription and searching for natural drugs for targeting the treatment of ischemic stroke prognosis. The animal experiments in this study followed the regulations of Animal Ethics Committee of Tianjin University of Traditional Chinese Medicine.
Key words:    shuxuening injection    total ginkgo flavonol glycosides    total ginkgolides    ischemic stroke    granulocyte colony-stimulating factor   
收稿日期: 2020-07-29
DOI: 10.16438/j.0513-4870.2020-1265
基金项目: 国家自然科学基金资助项目(81873037);国家重点研发计划项目(2018YFC1704502);天津中医药大学研究生科研创新资助项目(YJSKC-20191035).
通讯作者: 朱彦,Tel:15822700439;E-mail:yanzhu.harvard@icloud.com
Email: yanzhu.harvard@icloud.com
相关功能
PDF(1692KB) Free
打印本文
0
作者相关文章
李志雄  在本刊中的所有文章
肖光旭  在本刊中的所有文章
贺爽  在本刊中的所有文章
王焕义  在本刊中的所有文章
朱彦  在本刊中的所有文章

参考文献:
[1] Omidkhoda SF, Razavi BM, Hosseinzadeh H. Protective effects of Ginkgo biloba L. against natural toxins, chemical toxicities, and radiation:a comprehensive review[J]. Phytother Res, 2019, 33:2821-2840.
[2] Tian J, Liu Y, Chen K. Ginkgo biloba extract in vascular protection:molecular mechanisms and clinical applications[J]. Curr Vasc Pharmacol, 2017, 15:532-548.
[3] Tulsulkar J, Glueck B, Hinds TD, et al. Ginkgo biloba extract prevents female mice from ischemic brain damage and the mechanism is independent of the HO1/Wnt pathway[J]. Transl Stroke Res, 2016, 7:120-131.
[4] Zeng GR, Zhou SD, Shao YJ, et al. Effect of Ginkgo biloba extract-761 on motor functions in permanent middle cerebral artery occlusion rats[J]. Phytomedicine, 2018, 48:94-103.
[5] Li Z, Xiao G, Lyu M, et al. Shuxuening injection facilitates neurofunctional recovery via down-regulation of G-CSF-mediated granulocyte adhesion and diapedesis pathway in a subacute stroke mouse model[J]. Biomed Pharmacother, 2020, 127:110213.
[6] Chen J, Zhang X, liu J, et al. Progress on clinical application of shuxuening injection[J]. Chin J Drug Eval (中国药物评价), 2015, 32:297-301.
[7] Ma H, Li J, An M, et al. A powerful on line ABTS+-CE-DAD method to screen and quantify major antioxidants for quality control of shuxuening injection[J]. Sci Rep, 2018, 8:5441.
[8] Chen F, Li L, Xu F, et al. Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration[J]. Br J Pharmacol, 2013, 170:440-457.
[9] Liebgott T, Miollan M, Berchadsky Y, et al. Complementary cardioprotective effects of flavonoid metabolites and terpenoid constituents of Ginkgo biloba extract (EGb 761) during ischemia and reperfusion[J]. Basic Res Cardiol, 2000, 95:368-377.
[10] Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update:a report from the American Heart Association[J]. Circulation, 2018, 137:e67-e492.
[11] Broussalis E, Killer M, McCoy M, et al. Current therapies in ischemic stroke. Part A. Recent developments in acute stroke treatment and in stroke prevention[J]. Drug Discov Today, 2012, 17:296-309.
[12] Re-examining Acute Eligibility for Thrombolysis Task Force,Levine SR, Khatri P, et al. Review, historical context, and clarifications of the NINDS rt-PA stroke trials exclusion criteria. Part 1:rapidly improving stroke symptoms[J]. Stroke, 2013, 44:2500-2505.
[13] Wang Y, Liao X, Zhao X, et al. Using recombinant tissue plasminogen activator to treat acute ischemic stroke in China:analysis of the results from the Chinese National Stroke Registry (CNSR)[J]. Stroke, 2011, 42:1658-1664.
[14] Man S, Xian Y, Holmes DN, et al. Association between thrombolytic door-to-needle time and 1-year mortality and readmission in patients with acute ischemic stroke[J]. JAMA, 2020, 323:2170-2184.
[15] Qin X, Akter F, Qin L, et al. Adaptive immunity regulation and cerebral ischemia[J]. Front Immunol, 2020, 11:689.
[16] Rossi B, Angiari S, Zenaro E, et al. Vascular inflammation in central nervous system diseases:adhesion receptors controlling leukocyte-endothelial interactions[J]. J Leukoc Biol, 2011, 89:539-556.
[17] Lyu M, Cui Y, Zhao T, et al. Tnfrsf12a-mediated atherosclerosis signaling and inflammatory response as a common protection mechanism of shuxuening injection against both myocardial and cerebral ischemia-reperfusion injuries[J]. Front Pharmacol, 2018, 9:312.
[18] Xiao G, Lyu M, Wang Y, et al. Ginkgo flavonol glycosides or ginkgolides tend to differentially protect myocardial or cerebral ischemia-reperfusion injury regulation of TWEAK-Fn14 signaling in heart and brain[J]. Front Pharmacol, 2019, 10:735.
[19] Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice[J]. J Cereb Blood Flow Metab, 2000, 20:1311-1319.
[20] Sanchez HL, Silva LB, Portiansky EL, et al. Dopaminergic mesencephalic systems and behavioral performance in very old rats[J]. Neuroscience, 2008, 154:1598-1606.
[21] Caballero-Garrido E, Pena-Philippides JC, Galochkina Z, et al. Characterization of long-term gait deficits in mouse dMCAO, using the CatWalk system[J]. Behav Brain Res, 2017, 331:282-296.
[22] Liu NW, Ke CC, Zhao Y, et al. Evolutional characterization of photochemically induced stroke in rats:a multimodality imaging and molecular biological study[J]. Transl Stroke Res, 2017, 8:244-256.
[23] McBride DW, Klebe D, Tang J, et al. Correcting for brain swelling's effects on infarct volume calculation after middle cerebral artery occlusion in rats[J]. Transl Stroke Res, 2015, 6:323-338.
[24] Orgah JO, Yu J, Zhao T, et al. Danhong injection reversed cardiac abnormality in brain-heart syndrome via local and remote beta-adrenergic receptor signaling[J]. Front Pharmacol, 2018, 9:692.
[25] Liao HJ, Zheng YF, Li HY, et al. Two new ginkgolides from the leaves of Ginkgo biloba[J]. Planta Med, 2011, 77:1818-1821.
[26] Mohanta TK, Tamboli Y, Zubaidha PK. Phytochemical and medicinal importance of Ginkgo biloba L[J]. Nat Prod Res, 2014, 28:746-752.
[27] van Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals[J]. J Chromatogr A, 2009, 1216:2002-2032.
[28] Motuel J, Biette I, Srairi M, et al. Assessment of brain midline shift using sonography in neurosurgical ICU patients[J]. Crit Care, 2014, 18:676.
[29] Eyles JL, Hickey MJ, Norman MU, et al. A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis[J]. Blood, 2008, 112:5193-5201.
[30] Eberle M, Ebel P, Mayer CA, et al. Exacerbation of experimental autoimmune encephalomyelitis in ceramide synthase 6 knockout mice is associated with enhanced activation/migration of neutrophils[J]. Immunol Cell Biol, 2015, 93:825-836.
[31] Ohsaka A, Saionji K, Igari J. Granulocyte colony-stimulating factor administration increases serum concentrations of soluble selectins[J]. Br J Haematol, 1998, 100:66-69.
[32] Dagia NM, Gadhoum SZ, Knoblauch CA, et al. G-CSF induces E-selectin ligand expression on human myeloid cells[J]. Nat Med, 2006, 12:1185-1190.
[33] Silvescu CI, Sackstein R. G-CSF induces membrane expression of a myeloperoxidase glycovariant that operates as an E-selectin ligand on human myeloid cells[J]. Proc Natl Acad Sci U S A, 2014, 111:10696-10701.
[34] Fusté B, Mazzara R, Escolar G, et al. Granulocyte colony-stimulating factor increases expression of adhesion receptors on endothelial cells through activation of p38 MAPK[J]. Haematologica, 2004, 89:578-585.
[35] Birks J, Grimley EV, Van Dongen M. Ginkgo biloba for cognitive impairment and dementia[J]. Cochrane Database Syst Rev, 2002, (4):CD003120.
[36] Liu H, Ye M, Guo H. An updated review of randomized clinical trials testing the improvement of cognitive function of Ginkgo biloba extract in healthy people and Alzheimer's patients[J]. Front Pharmacol, 2019, 10:1688.
[37] Liu Y, Ji Y, Ma M. Clinical application and mechanism of ginaton injection[J]. Proc Clin Med (临床医药实践), 2005, 14:91-92.
[38] Chang J, Yao X, Zou H, et al. BDNF/PI3K/Akt and Nogo-A/RhoA/ROCK signaling pathways contribute to neurorestorative effect of Houshiheisan against cerebral ischemia injury in rats[J]. J Ethnopharmacol, 2016, 194:1032-1042.
[39] Deng YK, Wei F, An BQ. Effects of ginaton on the markers of myocardial injury during cardiopulmonary bypass[J]. Chin J Integr Tradit Chin West Med (中国中西医结合杂志), 2006, 26:316-318.
[40] Li X, Zhang D, Bai Y, et al. Ginaton improves neurological function in ischemic stroke rats via inducing autophagy and maintaining mitochondrial homeostasis[J]. Neuropsychiatr Dis Treat, 2019, 15:1813-1822.
[41] Miao M, Zhang X, Bai M, et al. Persimmon leaf flavonoid promotes brain ischemic tolerance[J]. Neural Regen Res, 2013, 8:2625-2632.
[42] Rendeiro C, Guerreiro JD, Williams CM, et al. Flavonoids as modulators of memory and learning:molecular interactions resulting in behavioural effects[J]. Proc Nutr Soc, 2012, 71:246-262.
[43] Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance:relevance and potential implications for Alzheimer's disease pathophysiology[J]. J Sci Food Agric, 2014, 94:1042-1056.
[44] Feng Z, Sun Q, Chen W, et al. The neuroprotective mechanisms of ginkgolides and bilobalide in cerebral ischemic injury:a literature review[J]. Mol Med, 2019, 25:57.
[45] Wang WP, Liu N, Kang Q, et al. Simultaneous determination by UPLC-MS/MS of seven bioactive compounds in rat plasma after oral administration of Ginkgo biloba tablets:application to a pharmacokinetic study[J]. J Zhejiang Univ Sci B, 2014, 15:929-939.
[46] Perego C, Fumagalli S, De Simoni MG. Response by Perego et al to letter regarding article, "combined genetic deletion of IL (interleukin)-4, IL-5, IL-9, and IL-13 does not affect ischemic brain injury in mice"[J]. Stroke, 2019, 50:e330.
[47] Konczol A, Rendes K, Dekany M, et al. Blood-brain barrier specific permeability assay reveals N-methylated tyramine derivatives in standardised leaf extracts and herbal products of Ginkgo biloba[J]. J Pharm Biomed Anal, 2016, 131:167-174.
[48] Ma S, Liu X, Xu Q, et al. Transport of ginkgolides with different lipophilicities based on an hCMEC/D3 cell monolayer as a blood-brain barrier cell model[J]. Life Sci, 2014, 114:93-101.