药学学报, 2021, 56(1): 244-256
引用本文:
王京龙, 杨斌, 郑丹丹, 张立华, 付先军, 张永清, 孙秀梅, 赵忠熙. 基于网络药理学二黄汤治疗急性肺损伤的作用机制研究[J]. 药学学报, 2021, 56(1): 244-256.
WANG Jing-long, YANG Bin, ZHENG Dan-dan, ZHANG Li-hua, FU Xian-jun, ZHANG Yong-qing, SUN Xiu-mei, ZHAO Zhong-xi. The possible mechanisms of Erhuang decoction in the treatment of acute lung injury based on network pharmacology[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 244-256.

基于网络药理学二黄汤治疗急性肺损伤的作用机制研究
王京龙1, 杨斌2, 郑丹丹3, 张立华1, 付先军4, 张永清4, 孙秀梅4, 赵忠熙3
1. 枣庄学院食品科学与制药工程学院, 山东 枣庄 277160;
2. 枣庄学院信息科学与工程学院, 山东 枣庄 277160;
3. 山东大学齐鲁医学院药学院, 山东 济南 250012;
4. 山东中医药大学药学院, 山东 济南 250355
摘要:
基于中药复方网络药理学方法探讨二黄汤(Erhuang decoction,EhD)治疗急性肺损伤(acute lung injury,ALI)的多成分-多靶点-多通路作用机制。以EhD体内入血成分为研究对象,利用SwissTargetPrediction、DisGeNET、Therapeutic Target Database(TTD)、GeneCards、Online Mendelian Inheritance in Man(OMIM)等数据库预测成分潜在作用靶点,并与ALI疾病预测靶点交集整合,获得二黄汤治疗ALI的潜在靶点。利用String数据库和Cytoscape软件进行蛋白相互作用(protein-protein interaction network,PPI)网络构建;利用DAVID平台进行基因本体论(Gene Ontology,GO)分析和京都基因和基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路注释;应用Cytoscape软件构建“入血成分-靶点-通路”网络;采用Swissdock在线平台对入血成分与关键靶点进行分子对接。建立小鼠ALI模型,进行肺组织切片、炎症因子检测和Western blot蛋白表达实验,验证EhD对ALI治疗效果。动物实验获得山东大学实验动物中心伦理委员会的批准(批准号:2016020)。结果发现信号传导与转录激活因子3(signal transducer and activator of transcription 3,STAT3)、血管内皮生长因子A(vascular endothelial cell growth factor A,VEGFA)、丝氨酸/苏氨酸蛋白激酶1(RAC-alpha serine/threonine-protein kinase,AKT1)、核转录因子-κB/p65(nuclear factor-kappa B/p65,RELA)等关键靶点148个,主要涉及炎症、氧化应激和细胞凋亡等生物过程,与癌症通路、VEGF信号通路、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路、Toll样受体(Toll-like receptors,TLRs)信号通路等通路相关。药效实验显示,EhD能显著降低ALI小鼠炎症因子含量、降低肺损伤程度。Western blot实验显示,EhD能显著下调NF-κB/p65表达,上调核转录因子抑制剂(NF-kappa B inhibitor alpha,IκBα)的表达。本研究从网络药理学的角度初步揭示了EhD治疗ALI的多成分、多靶点和多通路的作用机制,为中药复方作用机制研究提供借鉴。
关键词:    网络药理学      分子对接      二黄汤      急性肺损伤      靶点      通路      蛋白表达     
The possible mechanisms of Erhuang decoction in the treatment of acute lung injury based on network pharmacology
WANG Jing-long1, YANG Bin2, ZHENG Dan-dan3, ZHANG Li-hua1, FU Xian-jun4, ZHANG Yong-qing4, SUN Xiu-mei4, ZHAO Zhong-xi3
1. College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China;
2. College of Information Science and Engineering, Zaozhuang University, Zaozhuang 277160, China;
3. School of Pharmaceutical Sciences, CheeLoo College of Medicine, Shandong University, Jinan 250012, China;
4. College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
Abstract:
Network pharmacological approaches were used to predict the components, targets and pathways of Erhuang decoction (EhD) in the treatment of acute lung injury (ALI). The SwissTargetPrediction platform, DisGeNET, Therapeutic Target Database (TTD), GeneCards and Online Mendelian Inheritance in Man (OMIM) databases were used to predict potential targets of EhD and were integrated with the predicted targets for the treatment of ALI. A protein-protein interaction network model was constructed by using String database and Cytoscape software; the DAVID platform was used for Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A network of drug components-targets-pathways was constructed by Cytoscape software and the SwissDock platform was used to dock the molecules of EhD found in blood with the key disease targets. An ALI model was established in mice and inflammatory factor detection and Western blot protein expression experiments with lung tissue sections were carried out to verify the effect of EhD in the treatment of ALI. Animal experiment ethical requirements were approved by the Ethical Committee Experimental Animal Center of Shandong University (Grant Number:2016020). We identified 148 potential targets including signal transducer and activator of transcription 3 (STAT3), vascular endothelial cell growth factor A (VEGFA), RAC-alpha serine/threonine-protein kinase (AKT1), and nuclear factor-kappa B/p65 (RELA). The potential targets are largely associated with the biological processes of inflammation, oxidative stress, and apoptosis. Additional pathways relate to cancer, VEGF signaling, mitogen-activated protein kinase (MAPK) signaling, and Toll-like receptors (TLRs) signaling, along with other signaling pathways. Pharmacodynamic experiments showed that EhD could significantly reduce the content of inflammatory factors and the degree of lung injury of ALI mice. Western blot revealed that EhD could significantly decrease the expression of NF-κB/p65 and upregulate the expression of NF-kappa-B inhibitor alpha (IκBα). From the perspective of network pharmacology, the mechanisms of EhD in the treatment of ALI is consistent with the characteristics of multiple ingredients, multiple targets and multiple pathways. This research provides a reference for further study of the mechanism of this traditional Chinese medicine.
Key words:    network pharmacology    molecular docking    Erhuang decoction    acute lung injury    target    pathway    protein expression   
收稿日期: 2020-07-05
DOI: 10.16438/j.0513-4870.2020-1118
基金项目: 国家自然科学基金资助项目(61702445);山东省自然科学基金资助项目(ZR2018LH020);山东省高等学校科研计划项目(J18K035);山东省高等学校“青创科技计划”团队(2019KJM006);枣庄学院“青檀学者”人才项目.
通讯作者: 杨斌,Tel:86-632-3786871,E-mail:batsi@126.com;赵忠熙,Tel:86-531-88382187,E-mail:zxzhao@sdu.edu.cn
Email: batsi@126.com;zxzhao@sdu.edu.cn
相关功能
PDF(1722KB) Free
打印本文
0
作者相关文章
王京龙  在本刊中的所有文章
杨斌  在本刊中的所有文章
郑丹丹  在本刊中的所有文章
张立华  在本刊中的所有文章
付先军  在本刊中的所有文章
张永清  在本刊中的所有文章
孙秀梅  在本刊中的所有文章
赵忠熙  在本刊中的所有文章

参考文献:
[1] Sweeney RM, McAuley DF. Acute respiratory distress syndrome[J]. Lancet, 2016, 388:2416-2430.
[2] Ferrara JL. Cytokine dysregulation as a mechanism of graft versus host disease[J]. Curr Opin Immunol, 1993, 5:794-799.
[3] Jing H, Yao J, Liu X, et al. Fish-oil emulsion (omega-3 polyunsaturated fatty acids) attenuates acute lung injury induced by intestinal ischemia-reperfusion through adenosine 5'-monophosphate-activated protein kinase-sirtuin1 pathway[J]. J Surg Res, 2014, 187:252-261.
[4] Choudhury SR, Babes L, Rahn JJ, et al. Dipeptidase-1 is an adhesion receptor for neutrophil recruitment in lungs and liver[J]. Cell, 2019, 178:1205-1221.
[5] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395:497-506.
[6] Lu Y, Zhang PP, Wang DQ, et al. Discussion on pathogenesis and pathogenesis of acute lung injury[J]. J Emerg Tradit Chin Med (中国中医急症), 2020, 29:280-282.
[7] Wu Q.Yi Zong Jin Jian (医宗金鉴). 1st ed.[M]. China Medicine Science and Technology Press, 2011:345.
[8] Li HY, Yuan ZY, Chai YS, et al. Study on inflammatory mechanism between lung and brain by the action of baicalin on TLRs-NOD2 signaling[J]. World Sci Tech Mod Chin Mater Med (世界科学技术-中医药现代化), 2012, 14:1195-1200.
[9] Chen HJ, Zhang YL, Zhang WX, et al. Inhibition of myeloid differentiation factor 2 by baicalein protects against acute lung injury[J]. Phytomedicine, 2019, 63:152997.
[10] Li HM, Wang YY, Wang HD, et al. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms[J]. Acta Pharmacol Sin, 2011, 32:1364-1372.
[11] Kong DL, Wang ZF, Tian J, et al. Glycyrrhizin inactivates toll-like receptor (TLR) signaling pathway to reduce lipopolysaccharide-induced acute lung injury by inhibiting TLR2[J]. J Cell Physiol, 2019, 234:4597-4607.
[12] Liu ZJ, Zhong J, Zhang M, et al. The alexipharmic mechanisms of five licorice ingredients involved in CYP450 and Nrf2 pathways in paraquat-induced mice acute lung injury[J]. Oxid Med Cell Longev, 2019, 2019:7283104.
[13] Wu H, Wang JQ, Yang YW, et al. Preliminary exploration of the mechanism of Qingfei Paidu decoction against novel coronavirus pneumonia based on network pharmacology and molecular docking technology[J]. Acta Pharm Sin (药学学报), 2020, 55:374-383.
[14] Liu AL, Du GH. Network pharmacology:new guidelines for drug discovery[J]. Acta Pharm Sin (药学学报), 2010, 45:1472-1477.
[15] Wang JL, Zheng DD, Wang YZ, et al. Pharmacokinetics study of Erhuang decoction extracts in rats by HPLC-MS/MS[J]. J Chromatogr B, 2017, 1059:35-42.
[16] Wang JL, Zheng DD, Xv N, et al. Attribution and identification of absorbed components by HPLC-DAD-ESI-MS after oral administration of Erhuang decoction[J]. J Anal Sci Technol, 2020, 11:38.
[17] David G, Aurelien G, Matthias W, et al. SwissTargetPrediction:a web server for target prediction of bioactive small molecules[J]. Nucleic Acids Res, 2014, 42:W32-W38.
[18] Chen JJ, Huang CC, Chang HY, et al. Scutellaria baicalensis ameliorates acute lung injury by suppressing inflammation in vitro and in vivo[J]. Am J Chin Med, 2017, 45:137-157.
[19] Bitencourt-Ferreira G, Azevedo WFD. Docking with SwissDock[J]. Methods Mol Biol, 2019, 2053:189-202.
[20] Tang SJ, Rao L, Chen J, et al. The docking prediction of baicalin and BMP receptor using SwissDock[J]. Chin J Biol Pharm (中国生化药物杂志), 2017, 37:34-36.
[21] Ding ZH, Zhong RX, Xia TY, et al. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury[J]. Biomed Pharmacother, 2020, 122:109706.
[22] Menegazzi M, Paola RD, Mazzon E, et al. Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice[J]. Pharmacol Res, 2008, 58:22-31.
[23] Zhang LP, Li JG. Glabridin reduces lipopolysaccharide-induced lung injury in rats by inhibiting p38 mitogen activated protein kinase/extracellular regulated protein kinases signaling pathway[J]. Natl Med J Chin (中华医学杂志), 2016, 96:3893-3897.
[24] Zhang J, Deng YY, Cheng B, et al. Protective effects and molecular mechanisms of baicalein on thioacetamide-induced toxicity in zebrafish larvae[J]. Chemosphere, 2020, 256:127038.
[25] Wei CY, Sun HL, Yang ML, et al. Protective effect of wogonin on endotoxin-induced acute lung injury via reduction of p38 MAPK and JNK phosphorylation[J]. Environ Toxicol, 2017, 32:397-403.
[26] Liu T, Dai WJ, Li C, et al. Baicalin alleviates silica-induced lung inflammation and fibrosis by inhibiting the Th17 response in C57BL/6 mice[J]. J Nat Prod, 2015, 78:3049-3057.
[27] Takamitsu S, Yasuhiko K, Toru N, et al. Inhibition of epidermal growth factor receptor and vascular endothelial growth factor receptor phosphorylation on tumor-associated endothelial cells leads to treatment of orthotopic human colon cancer in nude mice[J]. Neoplasia, 2007, 9:1066-1077.
[28] Zhao ZX, Liu BJ, Sun J, et al. Baicalein inhibits orthotopic human non-small cell lung cancer xenografts via Src/Id1 pathway[J]. Evid Based Complement Alternat Med, 2019, 2019:9806062.
[29] Guo Q, Huang F, Wang J, et al. Expressions of apoptosis gene Bcl-2 and Bad in the lung tissue of mice with acute lung injury[J]. Chin J Emerg Med, 2010, 19:250-252.
[30] Li J, Liu F, Jiang SL, et al. Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways[J]. Oncol Lett, 2018, 15:7409-7414.
[31] Agorreta J, Garayoa M, Montuenga LM, et al. Effects of acute hypoxia and lipopolysaccharide on nitric oxide synthase-2 expression in acute lung injury[J]. Am J Respir Crit Care Med, 2003, 168:287-296.
[32] Liu QM, Lv HM, Wen ZM, et al. Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-like receptor protein 3 inflammasome and inhibits the NF-κB pathway in macrophages and in acute lung injury[J]. Front Immunol, 2017, 8:1518.
[33] Zheng L, Zhu Q, Xu C, et al. Glycyrrhizin mitigates radiation-induced acute lung injury by inhibiting the HMGB1/TLR4 signalling pathway[J]. J Cell Mol Med, 2020, 24:214-226.
[34] Qu LH, Chen C, He W, et al. Glycyrrhizic acid ameliorates LPS-induced acute lung injuryby regulating autophagy through the PI3K/AKT/mTOR pathway[J]. Am J Transl Res, 2019, 11:2042-2055.
[35] Chen JM, Zhang WJ, Zhang LR, et al. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice[J]. J Radiat Res, 2017, 58:41-47.
[36] Han QH, Han N, Liu YZ, et al. Analysis of key genes and pathways involved in acute lung injury in a mouse model[J]. Genet Mol Res, 2014, 13:4591-4598.
[37] Xu J, Liu JL, Yue GL, et al. Therapeutic effect of the natural compounds baicalein and baicalin on autoimmune diseases[J]. Mol Med Rep, 2018, 18:1149-1154.
[38] Tsai CL, Lin YC, Wang HM, et al. Baicalein, an active component of Scutellaria baicalensis, protects against lipopolysaccharide-induced acute lung injury in rats[J]. J Ethnopharmacol, 2014, 153:197-206.
[39] Li ZH, Zheng J, Zhang N, et al. Berberine improves airway inflammation and inhibits NF-κB signaling pathway in an ovalbumin-induced rat model of asthma[J]. J Asthma, 2016, 53:999-1005.
[40] Yao L, Sun TL. Glycyrrhizin administration ameliorates Streptococcus aureus-induced acute lung injury[J]. Int Immunopharmacol, 2019, 70:504-511.
相关文献:
1.黄友, 杨莎莎, 林夏, 赵生嘉, 魏馨怡, 傅超美, 张臻.基于网络药理-分子对接研究附子理中丸治疗溃疡性结肠炎的作用机制[J]. 药学学报, 2020,55(8): 1812-1822
2.宋红新, 马旭冉, 王敦方, 王彦礼, 邹迪新, 苗金雪, 王汉, 杨伟鹏.基于网络药理学的黄芩汤治疗溃疡性结肠炎的潜在机制研究[J]. 药学学报, 2020,55(2): 247-255
3.郑一夫, 孔令雷, 贾皓, 张宝月, 王喆, 许律捷, 刘艾林, 杜冠华.基于系统的化合物-靶点相互作用预测模型的消栓通络方抗脑卒中网络药理学研究[J]. 药学学报, 2020,55(2): 256-264
4.吴昊, 王佳琪, 杨雨薇, 李天怡, 曹一佳, 曲玉霞, 靳玉洁, 张晨宁, 孙毅坤.基于网络药理学和分子对接技术初步探索“清肺排毒汤”抗新型冠状病毒肺炎作用机制[J]. 药学学报, 2020,55(3): 374-383
5.高凤凤, 裴艳玲, 任越, 陈紫军, 卢建秋, 张燕玲.基于网络药理学与分子对接技术研究黄精抗动脉粥样硬化的作用机制[J]. 药学学报, 2020,55(11): 2642-2650
6.田瑞, 李宇飞, 李莹倩, 郑继雯, 李华山.基于网络药理学探讨李氏溃结方治疗溃疡性结肠炎的分子机制[J]. 药学学报, 2020,55(11): 2657-2664
7.马林, 邵明燕, 孙乾斌, 李春, 王勇.基于网络药理学的丹七片治疗冠心病作用机制研究[J]. 药学学报, 2020,55(12): 2942-2950
8.袁文彬, 韦艳美, 陈勇, 梁继超.基于网络药理学对刺五加总苷治疗2型糖尿病作用机制研究[J]. 药学学报, 2019,54(11): 1982-1989
9.毛霞, 陈文佳, 李鹰飞, 李玮婕, 李泰贤, 王晓月, 郭敏群, 张彦琼, 林娜.基于网络药理学研究策略探究芍药苷对佐剂诱导型关节炎大鼠模型的治疗作用及其分子机制[J]. 药学学报, 2019,54(11): 2000-2010
10.庄莉, 翟园园, 姚卫峰, 徐佳, 冯丽, 包贝华, 曹雨诞, 张丽, 丁安伟.基于网络药理学的二至丸对肾脏保护作用的机制研究[J]. 药学学报, 2019,54(5): 877-885
11.徐瑞豪, 樊慧, 张莉, 王慧慧, 仝瑶, 陈晶玉, 常高萍, 冯卫生, 郑晓珂.怀菊花中咖啡酰基奎宁酸类化合物通过调节ERK/MAPK信号通路改善LPS诱导的HUVEC血管内皮细胞损伤[J]. 药学学报, 2019,54(7): 1207-1213
12.张宝月, 庞晓丛, 贾皓, 王喆, 刘艾林, 杜冠华.基于全球上市药物数据的抗阿尔茨海默病重定位新药发现[J]. 药学学报, 2019,54(7): 1214-1224
13.邹纯才, 洪国君, 鄢海燕.网络药理学预测瓜蒌抗心肌缺血再灌注损伤作用机制及验证研究[J]. 药学学报, 2019,54(7): 1234-1240
14.李冰涛, 翟兴英, 李佳, 涂珺, 张启云, 徐国良, 黄丽萍, 邵峰, 朱卫丰, 刘荣华.基于网络药理学葛根解热作用机制研究[J]. 药学学报, 2019,54(8): 1409-1416
15.沈霞, 任丹, 高静, 张岗, 王永华, 彭亮, 裴丽珊.基于网络药理学复方龙脉宁方治疗脑卒中的分子机制研究[J]. 药学学报, 2019,54(9): 1588-1596
16.张王宁, 高耀, 李科, 钞建宾, 秦雪梅, 李爱平.基于网络药理学的黄芪总黄酮治疗肾病综合征的机制研究[J]. 药学学报, 2018,53(9): 1429-1441
17.宋勇丽, 王政霖, 邢玮, 吴晏, 王伟, 韩静.基于网络药理学的复方血栓通治疗糖尿病视网膜病的药理机制研究[J]. 药学学报, 2018,53(9): 1442-1448
18.时悦, 姚璎珈, 蔺莹, 梁喜才, 倪颖男, 吴雨桐, 杨静娴.基于网络药理学的开心散治疗阿尔茨海默病的作用机制分析[J]. 药学学报, 2018,53(9): 1458-1466
19.颜磊, 何小燕, 高耀, 向欢, 徐向平, 黄胜, 颜冬兰, 秦雪梅, 田俊生.基于网络药理学的驴胶补血颗粒升高白细胞作用机制研究[J]. 药学学报, 2018,53(10): 1660-1669
20.吴丹, 高耀, 向欢, 邢婕, 韩雨梅, 秦雪梅, 田俊生.基于网络药理学的柴胡抗抑郁作用机制研究[J]. 药学学报, 2018,53(2): 210-219
21.李磊, 图门巴雅尔, 李培锋, 刘畅, 李升和, 宁康健, 姜锦鹏.牛磺鹅去氧胆酸抗炎作用机制的网络药理学研究[J]. 药学学报, 2018,53(12): 2064-2075
22.赵蕾, 武嫣斐, 高耀, 向欢, 秦雪梅, 田俊生.基于网络药理学的百合地黄汤干预心理亚健康作用机制研究[J]. 药学学报, 2017,52(1): 99-105
23.孙莉敏, 刘丽芳, 朱华旭, 朱宝杰, 张启春.基于网络药理学的黄连解毒汤治疗阿尔兹海默症的作用机制研究[J]. 药学学报, 2017,52(8): 1268-1275
24.许律捷, 姜雯, 庞晓丛, 康德, 熊婉迪, 刘睿, 邢建国, 刘艾林, 杜冠华.复方一枝蒿抗流感有效成分的网络药理学研究[J]. 药学学报, 2017,52(5): 745-752
25.韩彦琪, 许浚, 张喜民, 张铁军, 任一杰, 刘昌孝.基于网络药理学的元胡止痛滴丸治疗原发性痛经的作用机制研究[J]. 药学学报, 2016,51(3): 380-387
26.陈建丽, 高耀, 秦雪梅, 田俊生.基于网络药理学的复方柴归方超临界CO2萃取组分的抗抑郁作用机制[J]. 药学学报, 2016,51(3): 388-395
27.高耀, 高丽, 高晓霞, 周玉枝, 秦雪梅, 田俊生.基于网络药理学的逍遥散抗抑郁活性成分作用靶点研究[J]. 药学学报, 2015,50(12): 1589-1595
28.白雨, 范雪梅, 孙瀚, 王义明, 梁琼麟, 罗国安.基于网络药理学的罗格列酮复方作用机制探讨[J]. 药学学报, 2015,50(3): 284-290
29.程彬峰, 侯媛媛, 姜 民, 赵振营, 董林毅, 白 钢.基于网络药理学的清肺消炎丸抗炎机制的初步研究[J]. 药学学报, 2013,48(5): 686-693
30.吴文, 卢骋, 陈思宇, 余聂芳.已上市和部分正在Ⅲ期临床开发中的多靶点激酶抑制剂抑酶谱及信号传导通路分析[J]. 药学学报, 2009,44(3): 242-257