药学学报, 2021, 56(3): 703-710
邓绮虹, 王峥, 邓贤明, 李莉. 靶向STAT蛋白的抑制剂在淋巴瘤治疗中的研究进展[J]. 药学学报, 2021, 56(3): 703-710.
DENG Qi-hong, WANG Zheng, DENG Xian-ming, LI Li. Research progress on STAT protein inhibitors in the treatment of lymphoma[J]. Acta Pharmaceutica Sinica, 2021, 56(3): 703-710.

邓绮虹1, 王峥2, 邓贤明1, 李莉1
1. 厦门大学生命科学学院, 天然产物源靶向药物国家地方联合工程实验室, 福建 厦门 361102;
2. 集美大学食品与生物工程学院, 福建 厦门 361021
信号转导和转录激活蛋白(signal transducer and activator of transcription,STAT)家族在多种恶性淋巴瘤中普遍存在异常激活和突变,其抑制剂的研究发现与临床应用成为淋巴瘤的一个重要治疗策略。本文介绍了STATs蛋白在多种恶性淋巴瘤中的异常激活突变,并着重综述了靶向STATs蛋白的最新筛选策略及其在淋巴瘤治疗中的临床应用研究,为STATs抑制剂的进一步研发提供借鉴。
关键词:    淋巴瘤      STAT转录因子      抗肿瘤药      药物筛选      靶向治疗     
Research progress on STAT protein inhibitors in the treatment of lymphoma
DENG Qi-hong1, WANG Zheng2, DENG Xian-ming1, LI Li1
1. State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen 361102, China;
2. College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
The abnormal activation and mutation of signal transducer and activator transcription (STAT) proteins has been implicated in multiple lymphomas. The research discovery and clinical application of STATs inhibitors have become an important strategy for treating lymphoma. This review introduces the abnormal activation and mutation of STATs in multiple malignant lymphomas, and focuses on reviewing the latest screening strategies targeting STATs and its clinical application in the treatment of lymphoma, providing references for the further development of STATs inhibitors.
Key words:    lymphoma    STAT transcription factor    antineoplastic agent    drug screening    targeted therapy   
收稿日期: 2020-12-01
DOI: 10.16438/j.0513-4870.2020-1831
基金项目: 国家自然科学基金资助项目(82073874).
通讯作者: 李莉,Tel:86-592-2181722,E-mail:lli@xmu.edu.cn
Email: lli@xmu.edu.cn
PDF(802KB) Free
邓绮虹  在本刊中的所有文章
王峥  在本刊中的所有文章
邓贤明  在本刊中的所有文章
李莉  在本刊中的所有文章

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68:394-424.
[2] Liu W, Liu J, Song Y, et al. Mortality of lymphoma and myeloma in China, 2004-2017:an observational study[J]. J Hematol Oncol, 2019, 12:22.
[3] Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma[J]. N Engl J Med, 2015, 372:311-319.
[4] Ying Z, Huang XF, Xiang X, et al. A safe and potent anti-CD19 CAR T cell therapy[J]. Nat Med, 2019, 25:947-953.
[5] Kim JH, Kim WS, Park C. Interleukin-6 mediates resistance to PI3K-pathway-targeted therapy in lymphoma[J]. BMC Cancer, 2019, 19:936.
[6] Song Z, Wang M, Zhang A. Alectinib:a novel second generation anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance[J]. Acta Pharm Sin B, 2015, 5:34-37.
[7] Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma[J]. Nat Rev Clin Oncol, 2018, 15:31-46.
[8] Tiacci E, Ladewig E, Schiavoni G, et al. Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma[J]. Blood, 2018, 131:2454-2465.
[9] Mata E, Diaz-Lopez A, Martin-Moreno AM, et al. Analysis of the mutational landscape of classic Hodgkin lymphoma identifies disease heterogeneity and potential therapeutic targets[J]. Oncotarget, 2017, 8:111386-111395.
[10] Song TL, Nairismagi ML, Laurensia Y, et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma[J]. Blood, 2018, 132:1146-1158.
[11] Ando S, Kawada JI, Watanabe T, et al. Tofacitinib induces G1 cell-cycle arrest and inhibits tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells[J]. Oncotarget, 2016, 7:76793-76805.
[12] Kim SJ, Yoon DH, Kang HJ, et al. Ruxolitinib shows activity against Hodgkin lymphoma but not primary mediastinal large B-cell lymphoma[J]. BMC Cancer, 2019, 19:1080.
[13] Lee S, Shah T, Yin C, et al. Ruxolitinib significantly enhances in vitro apoptosis in Hodgkin lymphoma and primary mediastinal B-cell lymphoma and survival in a lymphoma xenograft murine model[J]. Oncotarget, 2018, 9:9776-9788.
[14] Yin Y, Zhang TT, Zhang DY. Research progress of JAK-3 kinase and its inhibitors[J]. Acta Pharm Sin (药学学报), 2016, 51:1520-1529.
[15] Niu J, Sun Y, Chen B, et al. Fatty acids and cancer-amplified ZDHHC19 promote STAT3 activation through S-palmitoylation[J]. Nature, 2019, 573:139-143.
[16] Zhang MM, Zhou LX, Xu YJ, et al. A STAT3 palmitoylation cycle promotes TH17 differentiation and colitis[J]. Nature, 2020, 586:434-439.
[17] Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes-elucidating the mechanism of STAT-mediated oncogenesis[J]. Cancer Biol Ther, 2004, 3:1045-1050.
[18] Maurer B, Nivarthi H, Wingelhofer B, et al. High activation of STAT5A drives peripheral T-cell lymphoma and leukemia[J]. Haematologica, 2020, 105:435-447.
[19] Rui L, Drennan AC, Ceribelli M, et al. Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma[J]. Proc Natl Acad Sci U S A, 2016, 113:E7260-E7267.
[20] Wang C, Zhu C, Wei F, et al. Constitutive activation of interleukin-13/STAT6 contributes to Kaposi's sarcoma-associated herpesvirus-related primary effusion lymphoma cell proliferation and survival[J]. J Virol, 2015, 89:10416-10426.
[21] Bastidas Torres AN, Cats D, Mei H, et al. Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides[J]. Genes Chromosomes Cancer, 2018, 57:653-664.
[22] Lee S, Day NS, Miles RR, et al. Comparative genomic expression signatures of signal transduction pathways and targets in paediatric Burkitt lymphoma:a Children's Oncology Group report[J]. Br J Haematol, 2017, 177:601-611.
[23] Meyer AN, Gallo LH, Ko J, et al. Oncogenic mutations in IKKβ function through global changes induced by K63-linked ubiquitination and result in autocrine stimulation[J]. PLoS One, 2018, 13:e0206014.
[24] An B, Zhu S, Li T, et al. A dual TLR7/TLR9 inhibitor HJ901 inhibits ABC-DLBCL expressing the MyD88 L265P mutation[J]. Front Cell Dev Biol, 2020, 8:262.
[25] de Araujo ED, Erdogan F, Neubauer HA, et al. Structural and functional consequences of the STAT5B(N642H) driver mutation[J]. Nat Commun, 2019, 10:2517.
[26] Miloudi H, Leroy K, Jardin F, et al. STAT6 is a cargo of exportin 1:biological relevance in primary mediastinal B-cell lymphoma[J]. Cell Signal, 2018, 46:76-82.
[27] O'Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway:impact on human disease and therapeutic intervention[J]. Annu Rev Med, 2015, 66:311-328.
[28] Lai PS, Rosa DA, Magdy Ali A, et al. A STAT inhibitor patent review:progress since 2011[J]. Expert Opin Ther Pat, 2015, 25:1397-1421.
[29] Liu J, Liang L, Li D, et al. JAK3/STAT3 oncogenic pathway and PRDM1 expression stratify clinicopathologic features of extranodal NK/T cell lymphoma, nasal type[J]. Oncol Rep, 2019, 41:3219-3232.
[30] Hayakawa F, Sugimoto K, Harada Y, et al. A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases[J]. Blood Cancer J, 2013, 3:e166.
[31] Ogura M, Uchida T, Terui Y, et al. Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies[J]. Cancer Sci, 2015, 106:896-901.
[32] Xiang D, Yuan Y, Chen L, et al. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes[J]. Biochem Biophys Res Commun, 2015, 464:221-228.
[33] Wang M, Zhang L, Han X, et al. Atiprimod inhibits the growth of mantle cell lymphoma in vitro and in vivo and induces apoptosis via activating the mitochondrial pathways[J]. Blood, 2007, 109:5455-5462.
[34] Uchihara Y, Ohe T, Mashino T, et al. N-Acetyl cysteine prevents activities of STAT3 inhibitors, Stattic and BP-1-102 independently of its antioxidant properties[J]. Pharmacol Rep, 2019, 71:1067-1078.
[35] Kaneko N, Kita A, Yamanaka K, et al. Combination of YM155, a survivin suppressant with a STAT3 inhibitor:a new strategy to treat diffuse large B-cell lymphoma[J]. Leuk Res, 2013, 37:1156-1161.
[36] Zhou H, Bai L, Xu R, et al. Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein[J]. J Med Chem, 2019, 62:11280-11300.
[37] Bai L, Zhou H, Xu R, et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo[J]. Cancer Cell, 2019, 36:498-511.e17.
[38] Chang Y, Cui M, Fu X, et al. MiRNA-155 regulates lymphangiogenesis in natural killer/T-cell lymphoma by targeting BRG1[J]. Cancer Biol Ther, 2019, 20:31-41.
[39] Lu K, Chen N, Zhou XX, et al. The STAT3 inhibitor WP1066 synergizes with vorinostat to induce apoptosis of mantle cell lymphoma cells[J]. Biochem Biophys Res Commun, 2015, 464:292-298.
[40] Geng L, Li X, Zhou X, et al. WP1066 exhibits antitumor efficacy in nasaltype natural killer/T-cell lymphoma cells through downregulation of the STAT3 signaling pathway[J]. Oncol Rep, 2016, 36:2868-2874.
[41] Ma C, Horlad H, Pan C, et al. Stat3 inhibitor abrogates the expression of PD-1 ligands on lymphoma cell lines[J]. J Clin Exp Hematop, 2017, 57:21-25.
[42] Hong D, Kurzrock R, Kim Y, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer[J]. Sci Transl Med, 2015, 7:314ra185.
[43] Zeng R, Tang Y, Zhou H, et al. STAT3 mediates multidrug resistance of Burkitt lymphoma cells by promoting antioxidant feedback[J]. Biochem Biophys Res Commun, 2017, 488:182-188.
[44] Hira SK, Mondal I, Bhattacharya D, et al. Downregulation of STAT3 phosphorylation enhances tumoricidal effect of IL-15-activated dendritic cell against doxorubicin-resistant lymphoma and leukemia via TNF-alpha[J]. Int J Biochem Cell Biol, 2015, 67:1-13.
[45] Diaz T, Navarro A, Ferrer G, et al. Lestaurtinib inhibition of the Jak/STAT signaling pathway in hodgkin lymphoma inhibits proliferation and induces apoptosis[J]. PLoS One, 2011, 6:e18856.
[46] Price-Troska T, Yang ZZ, Diller D, et al. Inhibiting IL-2 signaling and the regulatory T-cell pathway using computationally designed peptides[J]. Invest New Drugs, 2019, 37:9-16.
[47] Swerev TM, Wirth T, Ushmorov A. Activation of oncogenic pathways in classical Hodgkin lymphoma by decitabine:a rationale for combination with small molecular weight inhibitors[J]. Int J Oncol, 2017, 50:555-566.
[48] Simpson HM, Furusawa A, Sadashivaiah K, et al. STAT5 inhibition induces TRAIL/DR4 dependent apoptosis in peripheral T-cell lymphoma[J]. Oncotarget, 2018, 9:16792-16806.
[49] Lemoine M, Derenzini E, Buglio D, et al. The pan-deacetylase inhibitor panobinostat induces cell death and synergizes with everolimus in Hodgkin lymphoma cell lines[J]. Blood, 2012, 119:4017-4025.
[50] Younes A, Ong TC, Ribrag V, et al. Efficacy of panobinostat in phase Ⅱ study in patients with relapsed/refractory Hodgkin lymphoma (HL) after high-dose chemotherapy with autologous stem cell transplant[J]. Blood, 2009, 114:380-381.
[51] Fagard R, Mouas H, Dusanter-Fourt I, et al. Resistance to fludarabine-induced apoptosis in Epstein-Barr virus infected B cells[J]. Oncogene, 2002, 21:4473-4480.
[52] Yang J, Stark GR. Roles of unphosphorylated STATs in signaling[J]. Cell Res, 2008, 18:443-451.
[53] Schust J, Sperl B, Hollis A, et al. Stattic:a small-molecule inhibitor of STAT3 activation and dimerization[J]. Chem Biol, 2006, 13:1235-1242.
[54] Ren X, Duan L, He Q, et al. Identification of niclosamide as a new small-molecule inhibitor of the STAT3 signaling pathway[J]. ACS Med Chem Lett, 2010, 1:454-459.
[55] Muller J, Sperl B, Reindl W, et al. Discovery of chromone-based inhibitors of the transcription factor STAT5[J]. Chembiochem, 2008, 9:723-727.
[56] Nelson EA, Walker SR, Weisberg E, et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors[J]. Blood, 2011, 117:3421-3429.
[57] Licht V, Noack K, Schlott B, et al. Caspase-3 and caspase-6 cleave STAT1 in leukemic cells[J]. Oncotarget, 2014, 5:2305-2317.
[58] Prutsch N, Gurnhofer E, Suske T, et al. Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma[J]. Leukemia, 2019, 33:696-709.
[59] Henrickson SE, Dolan JG, Forbes LR, et al. Gain-of-function STAT1 mutation with familial lymphadenopathy and Hodgkin lymphoma[J]. Front Pediatr, 2019, 7:160.
[60] Torella D, Curcio A, Gasparri C, et al. Fludarabine prevents smooth muscle proliferation in vitro and neointimal hyperplasia in vivo through specific inhibition of STAT-1 activation[J]. Am J Physiol Heart Circ Physiol, 2007, 292:H2935-H2943.
[61] Brown JR, Friedberg JW, Feng Y, et al. A phase 2 study of concurrent fludarabine and rituximab for the treatment of marginal zone lymphomas[J]. Br J Haematol, 2009, 145:741-748.