药学学报, 2021, 56(4): 895-905
引用本文:
尹佳婷, 彭印, 徐文浩, 毛梦菲, 段金廒, 郭建明*. 通过调控肠道菌群治疗肝性脑病的研究现状及治疗策略分析[J]. 药学学报, 2021, 56(4): 895-905.
YIN Jia-ting, PENG Yin, XU Wen-hao, MAO Meng-fei, DUAN Jin-ao, GUO Jian-ming*. Analysis of the research status and intervention strategies for the treatment of hepatic encephalopathy based on gut microbiota regulation[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 895-905.

通过调控肠道菌群治疗肝性脑病的研究现状及治疗策略分析
尹佳婷, 彭印, 徐文浩, 毛梦菲, 段金廒, 郭建明*
南京中医药大学, 江苏省方剂高技术研究重点实验室, 江苏省中药资源产业化过程协同创新中心, 江苏 南京 210023
摘要:
肝性脑病是终末期肝病发展过程中常见的一种代谢性神经精神异常综合征。自从肠-肝-脑轴的概念提出以来,对于肝性脑病发病过程与肠道菌群的关系一直是研究的热点。近年来肠道菌群越来越引起人们的重视,已有研究证实肠道菌群参与并影响了肝性脑病的多种病理环节。本文结合国内外的最新研究进展,针对调控肠道菌群进而干预肝性脑病病理进程的研究现状进行阐述,希望为基于肠道菌群调控干预肝性脑病进展提供新的思路与方法。
关键词:    肠道菌群      肝性脑病      治疗策略      发病机制      高氨血症     
Analysis of the research status and intervention strategies for the treatment of hepatic encephalopathy based on gut microbiota regulation
YIN Jia-ting, PENG Yin, XU Wen-hao, MAO Meng-fei, DUAN Jin-ao, GUO Jian-ming*
Jiangsu Key Laboratory of High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources, Nanjing University of Chinese Medicine, Nanjing 210023, China
Abstract:
Hepatic encephalopathy is a common metabolic neuropsychiatric syndrome in the development of end-stage liver disease. Since the concept of intestinal-liver-brain axis was proposed, the relationship between the pathogenesis of hepatic encephalopathy and the gut microbiota has been a hot research topic. In recent years, studies have confirmed that gut microbiota is involved in and affects various pathological processes of hepatic encephalopathy. This article combines the latest research progress at home and abroad to elaborate on the research status of regulating gut microbiota and thus interfering with the pathological process of hepatic encephalopathy, hoping to provide new ideas and methods for the intervention of hepatic encephalopathy based on the regulation of gut microbiota.
Key words:    gut microbiota    hepatic encephalopathy    therapy    pathogenesis    hyperammonemia   
收稿日期: 2020-07-22
DOI: 10.16438/j.0513-4870.2020-1222
基金项目: 国家自然科学基金资助项目(81773983);2020年江苏省大学生创新创业训练计划项目(154).
通讯作者: 郭建明,Tel/Fax:86-25-85811917,E-mail:njuguo@njucm.edu.cn
Email: njuguo@njucm.edu.cn
相关功能
PDF(1235KB) Free
打印本文
0
作者相关文章
尹佳婷  在本刊中的所有文章
彭印  在本刊中的所有文章
徐文浩  在本刊中的所有文章
毛梦菲  在本刊中的所有文章
段金廒  在本刊中的所有文章
郭建明*  在本刊中的所有文章

参考文献:
[1] Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J. Hepatol, 2019, 70:151-171.
[2] Marcellin P, Kutala BK. Liver diseases:a major, neglected global public health problem requiring urgent actions and large-scale screening[J]. Liver Int, 2018, 38Suppl 1:2-6.
[3] Vilstrup H, Amodio P, Bajaj J, et al. Hepatic encephalopathy in chronic liver disease:2014 practice guideline by the american association for the study of liver diseases and the european association for the study of the liver[J]. Hepatology, 2014, 60:715-735.
[4] Bajaj JS, Cordoba J, Mullen KD, et al. Review article:the design of clinical trials in hepatic encephalopathy——an International Society for Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) consensus statement[J]. Aliment Pharmacol Ther, 2011, 33:739-747.
[5] Zuo Z, Fan H, Tang XD, et al. Effect of different treatments and alcohol addiction on gut microbiota in minimal hepatic encephalopathy patients[J]. Exp Ther Med, 2017, 14:4887-4895.
[6] Elsaid MI, John T, Li Y, et al. The health care burden of hepatic encephalopathy[J]. Clin Liver Dis, 2020, 24:263-275.
[7] Wang JY, Zhang NP, Chi BR, et al. Prevalence of minimal hepatic encephalopathy and quality of life evaluations in hospitalized cirrhotic patients in China[J]. World J Gastroenterol, 2013, 19:4984-4991.
[8] Ferenci P. Hepatic encephalopathy[J]. Gastroenterol Rep, 2017, 5:138-147.
[9] Fiati Kenston SS, Song X, Li Z, et al. Mechanistic insight, diagnosis, and treatment of ammonia-induced hepatic encephalopathy[J]. J Gastroenterol Hepatol, 2019, 34:31-39.
[10] Butterworth RF. Hepatic encephalopathy in cirrhosis:pathology and pathophysiology[J]. Drugs, 2019, 79:17-21.
[11] Weir V, Reddy KR. Nonpharmacologic management of hepatic encephalopathy:an update[J]. Clin Liver Dis, 2020, 24:243-261.
[12] Hadjihambi A, Arias N, Sheikh M, et al. Hepatic encephalopathy:a critical current review[J]. Hepatol Int, 2018, 12:135-147.
[13] Lin Z, Zu XP, Xie HS, et al. Research progress in mechanism of intestinal microorganisms in human diseases[J]. Acta Pharm Sin (药学学报), 2016, 51:843-852.
[14] Acharya C, Bajaj J. Altered microbiome in patients with cirrhosis and complications.[J]. Clin Gastroenterol Hepatol, 2019, 17:307-321.
[15] Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis[J]. Nature, 2014, 513:59-64.
[16] Chen Y, Yang F, Lu H, et al. Characterization of fecal microbial communities in patients with liver cirrhosis[J]. Hepatology, 2011, 54:562-572.
[17] Bajaj JS, Hylemon PB, Ridlon JM, et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303:G675-G685.
[18] Bobermin L, Arús B, Leite M, et al. Gap junction intercellular communication mediates ammonia-induced neurotoxicity[J]. Neurotox Res, 2016, 29:314-324.
[19] Kurmi K, Haigis M. Nitrogen metabolism in cancer and immunity[J]. Trends Cell Biol, 2020, 30:408-424.
[20] Lv XY, Li L. Clinical effect of rifaximin in treatment of complications associated with liver cirrhosis[J]. J Clin Hepatol (临床肝胆病杂志), 2018, 34:1551-1554.
[21] Ridlon J, Alves J, Hylemon P, et al. Cirrhosis, bile acids and gut microbiota:unraveling a complex relationship[J]. Gut Microbes, 2013, 4:382-387.
[22] Jayakumar AR, Norenberg MD. Hyperammonemia in hepatic encephalopathy[J]. J Clin Exp Hepatol, 2018, 8:272-280.
[23] Ohtani N, Kawada N. Role of the gut-liver axis in liver inflammation, fibrosis, and cancer:a special focus on the gut microbiota relationship[J]. Hepatol Commun, 2019, 3:456-470.
[24] Liu J, Lkhagva E, Chung HJ, et al. The pharmabiotic approach to treat hyperammonemia[J]. Nutrients, 2018, 10:140.
[25] Kurmi K, Haigis M. Nitrogen metabolism in cancer and immunity[J]. Trends Cell Biol, 2020, 30:408-424.
[26] Aldridge DR, Tranah EJ, Shawcross DL. Pathogenesis of hepatic encephalopathy:role of ammonia and systemic inflammation[J]. J Clin Exp Hepatol, 2015, 5:S7-S20.
[27] Levitt DG, Levitt MD. A model of blood-ammonia homeostasis based on a quantitative analysis of nitrogen metabolism in the multiple organs involved in the production, catabolism, and excretion of ammonia in humans[J]. Clin Exp Gastroenterol, 2018, 11:193-215.
[28] Sawhney R, Jalan R. Liver:the gut is a key target of therapy in hepatic encephalopathy[J]. Nat Rev Gastroenterol Hepatol, 2015, 12:7-8.
[29] Gilbert MS, Ijssennagger N, Kies AK, et al. Protein fermentation in the gut; implications for intestinal dysfunction in humans, pigs, and poultry[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315:G159-G170.
[30] Ahluwalia V, Betrapally NS, Hylemon PB, et al. Impaired gut-liver-brain axis in patients with cirrhosis[J]. Sci Rep, 2016, 6:26800.
[31] DeMorrow S. Bile acids in hepatic encephalopathy[J]. J Clin Exp Hepatol, 2019, 9:117-124.
[32] Wei LG, Wang XH, Niu M, et al. Metabolomic screening for diagnostic biomarkers of drug-induced chronic liver injury related cirrhosis[J]. Acta Pharm Sin (药学学报), 2019, 54:1449-1456.
[33] McMillin M, Frampton G, Quinn M, et al. Bile acid signaling is involved in the neurological decline in a murine model of acute liver failure[J]. Am J Pathol, 2016, 186:312-323.
[34] Xie G, Wang X, Jiang R, et al. Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failure[J]. EBioMedicine, 2018, 37:294-306.
[35] Jia W, Rajani C, Kaddurah-Daouk R, et al. Expert insights:the potential role of the gut microbiome-bile acid-brain axis in the development and progression of Alzheimer's disease and hepatic encephalopathy[J]. Med Res Rev, 2020, 40:1496-1507.
[36] Ridlon JM, Bajaj JS. The human gut sterolbiome:bile acid-microbiome endocrine aspects and therapeutics[J]. Acta Pharm Sin B, 2015, 5:99-105.
[37] Trauner M, Fuchs CD, Halilbasic E, et al. New therapeutic concepts in bile acid transport and signaling for management of cholestasis[J]. Hepatology, 2017, 65:1393-1404.
[38] Yu HC, Hou SC, Cui B, et al. Research progress on the role of bile acids in regulating glycolipid metabolism[J]. Acta Pharm Sin (药学学报), 2020, 55:1419-1430.
[39] Hegyi P, Maléth J, Walters JR, et al. Guts and gall:bile acids in regulation of intestinal epithelial function in health and disease[J]. Physiol Rev, 2018, 98:1983-2023.
[40] Luo M, Guo JY, Cao WK. Inflammation:a novel target of current therapies for hepatic encephalopathy in liver cirrhosis[J]. World J Gastroenterol, 2015, 21:11815-11824.
[41] Nicoletti A, Ponziani FR, Biolato M, et al. Intestinal permeability in the pathogenesis of liver damage:from non-alcoholic fatty liver disease to liver transplantation[J]. World J Gastroenterol, 2019, 25:4814-4834.
[42] Woodhouse CA, Patel VC, Singanayagam A, et al. Review article:the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease[J]. Aliment Pharmacol Ther, 2018, 47:192-202.
[43] Tranah TH, Vijay GK, Ryan JM, et al. Systemic inflammation and ammonia in hepatic encephalopathy[J]. Metab Brain Dis, 2013, 28:1-5.
[44] Li XL, Jiang W, Fan WM, et al. Role of gut microbiota in the treatment of nonalcoholic fatty liver disease with traditional Chinese medicine[J]. Acta Pharm Sin (药学学报), 2020, 55:15-24.
[45] Bajaj JS, Heuman DM, Hylemon PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications[J]. J Hepatol, 2014, 60:940-947.
[46] Kang DJ, Betrapally NS, Ghosh SA, et al. Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice[J]. Hepatology, 2016, 64:1232-1248.
[47] Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases?[J]. Obes Rev, 2013, 14:950-959.
[48] Bansal T, Alaniz RC, Wood TK, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation[J]. Proc Natl Acad Sci U S A, 2010, 107:228-233.
[49] Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases[J]. Gut, 2016, 65:2035-2044.
[50] Groiss SJ, Butz M, Baumgarten TJ, et al. GABA-ergic tone hypothesis in hepatic encephalopathy-revisited[J]. Clin Neurophysiol, 2019, 130:911-916.
[51] Strandwitz P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693:128-133.
[52] Bermúdez-Humarán LG, Salinas E, Ortiz GG, et al. From probiotics to psychobiotics:live beneficial bacteria which act on the brain-gut axis[J]. Nutrients, 2019, 11:890.
[53] Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites[J]. Proc Natl Acad Sci U S A, 2009, 106:3698-3703.
[54] Gao K, Mu CL, Farzi A, et al. Tryptophan metabolism:a link between the gut microbiota and brain[J]. Adv Nutr, 2020, 11:709-723.
[55] Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161:264-276.
[56] Forsythe P, Sudo N, Dinan T, et al. Mood and gut feelings[J]. Brain Behav Immun, 2010, 24:9-16.
[57] Rönnemaa E, Zethelius B, Vessby B, et al. Serum fatty-acid composition and the risk of Alzheimer's disease:a longitudinal population-based study[J]. Eur J Clin Nutr, 2012, 66:885-890.
[58] Harlow BE, Flythe MD, Kagan IA, et al. Isoflavone supplementation, via red clover hay, alters the rumen microbial community and promotes weight gain of steers grazing mixed grass pastures[J]. PLoS One, 2020, 15:e0229200.
[59] Wang X, Gibson GR, Sailer M, et al. Prebiotics inhibit proteolysis by gut bacteria in a host diet-dependent manner:a three-stage continuous in vitro gut model experiment[J]. Appl Environ Microbiol, 2020, 86:e02730-19.
[60] Yu M, Li Z, Chen W, et al. Dietary supplementation with citrus extract altered the intestinal microbiota and microbial metabolite profiles and enhanced the mucosal immune homeostasis in yellow-feathered broilers[J]. Front Microbiol, 2019, 10:2662.
[61] Zhang S, Zhao Y, Ohland C, et al. Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites[J]. Free Radic Biol Med, 2019, 131:332-344.
[62] Alimirah M, Sadiq O, Gordon SC. Novel therapies in hepatic encephalopathy[J]. Clin Liver Dis, 2020, 24:303-315.
[63] Leise MD, Poterucha JJ, Kamath PS, et al. Management of hepatic encephalopathy in the hospital[J]. Mayo Clin Proc, 2014, 89:241-253.
[64] Kaji K, Saikawa S, Takaya H, et al. Rifaximin alleviates endotoxemia with decreased serum levels of soluble CD163 and mannose receptor and partial modification of gut microbiota in cirrhotic patients[J]. Antibiotics (Basel), 2020, 9:145.
[65] Coronel-Castillo CE, Contreras-Carmona J, Frati-Munari AC, et al. Efficacy of rifaximin in the different clinical scenarios of hepatic encephalopathy[J]. Rev Gastroenterol Mex, 2020, 85:56-68.
[66] Yuan Y, Wang X, Xu X, et al. Evaluation of a dual-acting antibacterial agent, TNP-2092, on gut microbiota and potential application in the treatment of gastrointestinal and liver disorders[J]. ACS Infect Dis, 2020, 6:820-831.
[67] Wijdicks EFM. Lactulose:a simple sugar in a complex encephalopathy[J]. Neurocrit Care, 2018, 28:154-156.
[68] Shen TC, Albenberg L, Bittinger K, et al. Engineering the gut microbiota to treat hyperammonemia[J]. J Clin Invest, 2015, 125:2841-2850.
[69] Kurtz CB, Millet YA, Puurunen MK, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans[J]. Sci Transl Med, 2019, 11:eaau7975.
[70] Rivera-Flores R, Morán-Villota S, Cervantes-Barragán L, et al. Manipulation of microbiota with probiotics as an alternative for treatment of hepatic encephalopathy[J]. Nutrition, 2020, 73:110693.
[71] Bajaj J, Fagan A, Gavis E, et al. Long-term outcomes after fecal microbiota transplant in cirrhosis[J]. Gastroenterology, 2019, 15:1921-1923.
[72] Wang JY, Bajaj JS, Wang JB, et al. Lactulose improves cognition, quality of life, and gut microbiota in minimal hepatic encephalopathy:a multicenter, randomized controlled trial[J]. J Dig Dis, 2019, 20:547-556.
[73] Ponziani FR, Scaldaferri F, Petito V, et al. The role of antibiotics in gut microbiota modulation:the eubiotic effects of rifaximin[J]. Dig Dis, 2016, 34:269-278.
[74] Zhang Z, Zhai H, Geng J, et al. Large-scale survey of gut microbiota associated with MHE via 16S rRNA-based pyrosequencing[J]. Am J Gastroenterol, 2013, 108:1601-1611.
[75] Nicaise C, Prozzi D, Viaene E, et al. Control of acute, chronic, and constitutive hyperammonemia by wild-type and genetically engineered Lactobacillus plantarum in rodents[J]. Hepatology, 2008, 48:1184-1192.
[76] Sharma BC, Singh J. Probiotics in management of hepatic encephalopathy[J]. Metab Brain Dis, 2016, 31:1295-1301.
[77] Peng D, Hu ZW, Zhang XW. Therapeutic perspectives of intestinal probiotics A. muciniphila in metabolic disorders[J]. Acta Pharm Sin (药学学报), 2019, 54:768-777.
[78] Sun YM, Zhang YT, Zhang JH, et al. Advances in the study of gut pharmacomicrobiomics[J]. Acta Pharm Sin (药学学报), 2020, 55:2314-2321.
[79] Lynch SV, Pedersen O. The human intestinal microbiome in health and disease[J]. N Engl J Med, 2016, 375:2369-2379.
[80] Bajaj JS, Khoruts A. Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis[J]. J Hepatol, 2020, 72:1003-1027.
[81] Fuentes S, de Vos WM. How to manipulate the microbiota:fecal microbiota transplantation[J]. Adv Exp Med Biol, 2016, 902:143-153.
[82] Li DS, Huang QF, Guan LH, et al. Targeted bile acids and gut microbiome profiles reveal the hepato-protective effect of WZ tablet (Schisandra sphenanthera extract) against LCA-induced cholestasis[J]. Chin J Nat Med, 2020, 18:211-218.
[83] Li Q, Li M, Li F, et al. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice[J]. J Ethnopharmacol, 2020, 258:112896.
[84] Liu L, Liu Z, Li H, et al. Naturally occurring TPE-CA maintains gut microbiota and bile acids homeostasis via FXR signaling modulation of the liver-gut axis[J]. Front Pharmacol, 2020, 11:12.
[85] Fotschki B, Juśkiewicz J, Jurgoński A, et al. Raspberry pomace alters cecal microbial activity and reduces secondary bile acids in rats fed a high-fat diet[J]. J Nutr Biochem, 2017, 46:13-20.
[86] Sorribas M, Jakob MO, Yilmaz B, et al. FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis[J]. J Hepatol, 2019, 71:1126-1140.
[87] Fuchs CD, Paumgartner G, Mlitz V, et al. Colesevelam attenuates cholestatic liver and bile duct injury in Mdr2-/- mice by modulating composition, signalling and excretion of faecal bile acids[J]. Gut, 2018, 67:1683-1691.
[88] Liu Y, Chen K, Li F, et al. Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice[J]. Hepatology, 2020, 71:2050-2066.
[89] Jena PK, Sheng L, Li Y, et al. Probiotics VSL#3 are effective in reversing non-alcoholic steatohepatitis in a mouse model[J]. Hepatobiliary Surg Nutr, 2019, 9:170-182.
[90] Dhiman RK, Rana B, Agrawal S, et al. Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis:a randomized, controlled trial[J]. Gastroenterology, 2014, 147:1327-1337.
[91] Wang P, Wang J, Li D, et al. Targeting the gut microbiota with resveratrol:a demonstration of novel evidence for the management of hepatic steatosis[J]. J Nutr Biochem, 2020, 81:108363.
[92] Mohandas S, Vairappan B. Pregnane X receptor activation by its natural ligand ginkgolide-A improves tight junction proteins expression and attenuates bacterial translocation in cirrhosis[J]. Chem Biol Interact, 2020, 315:108891.
[93] Juanola O, Ferrusquía-Acosta J, García-Villalba R, et al. Circulating levels of butyrate are inversely related to portal hypertension, endotoxemia, and systemic inflammation in patients with cirrhosis[J]. FASEB J, 2019, 33:11595-11605.
[94] Duan Y, Wang Y, Dong H, et al. Changes in the intestine microbial, digestive, and immune-related genes of Litopenaeus vannamei in response to dietary probiotic Clostridium butyricum supplementation[J]. Front Microbiol, 2018, 9:2191.
[95] Zhai S, Qin S, Li L, et al. Dietary butyrate suppresses inflammation through modulating gut microbiota in high-fat diet-fed mice[J]. FEMS Microbiol Lett, 2019, 366:fnz153.
[96] Huang JF, Zhao Q, Dai MY, et al. Gut microbiota protects from triptolide-induced hepatotoxicity:key role of propionate and its downstream signalling events[J]. Pharmacol Res, 2020, 155:104752.
[97] Liu R, Kang JD, Sartor RB, et al. Neuroinflammation in murine cirrhosis is dependent on the gut microbiome and is attenuated by fecal transplant[J]. Hepatology, 2020, 71:611-626.
[98] Bajaj JS, Salzman NH, Acharya C, et al. Fecal microbial transplant capsules are safe in hepatic encephalopathy:a phase 1, randomized, placebo-controlled trial[J]. Hepatology, 2019, 70:1690-1703.
[99] Hendrikx T, Duan Y, Wang Y, et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice[J]. Gut, 2019, 68:1504-1515.
[100] Shi D, Lv L, Fang D, et al. Administration of Lactobacillus salivarius LI01 or Pediococcus pentosaceus LI05 prevents CCl4-induced liver cirrhosis by protecting the intestinal barrier in rats[J]. Sci Rep, 2017, 7:6927.
[101] Frank MG, Fonken LK, Watkins LR, et al. Could probiotics be used to mitigate neuroinflammation?[J]. ACS Chem Neurosci, 2019, 10:13-15.
[102] Chen H, Shen J, Li H, et al. Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression.[J]. J Ginseng Res, 2020, 44:86-95.
[103] Chen P, Hei M, Kong L, et al. One water-soluble polysaccharide from Ginkgo biloba leaves with antidepressant activities via modulation of the gut microbiome[J]. Food Funct, 2019, 10:8161-8171.
[104] Chen D, Yang X, Yang J, et al. Prebiotic effect of fructooligosaccharides from Morinda officinalis on Alzheimer's disease in rodent models by targeting the microbiota-gut-brain axis[J]. Front Aging Neurosci, 2017, 9:403.
[105] Hua X, Sun DY, Zhang WJ, et al. P7C3-A20 alleviates fatty liver by shaping gut microbiota and inducing FGF21/FGF1, via the AMP-activated protein kinase/CREB regulated transcription coactivator 2 pathway[J]. Br J Pharmacol, 2020. DOI:10.1111/bph.15008.
[106] Luo J, Wang T, Liang S, et al. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat[J]. Sci China Life Sci, 2014, 57:327-335.
[107] Song L, Gao Y, Zhang X, et al. Galactooligosaccharide improves the animal survival and alleviates motor neuron death in SOD1G93A mouse model of amyotrophic lateral sclerosis[J]. Neuron, 2013, 246:281-290.