药学学报, 2021, 56(4): 913-923
引用本文:
李鑫萍, 于渼璇, 况婷瑞, 延玺, 李春颖, 郝海军. 黄酮类衍生物抗肿瘤作用研究进展[J]. 药学学报, 2021, 56(4): 913-923.
LI Xin-ping, YU Mei-xuan, KUANG Ting-rui, YAN Xi, LI Chun-ying, HAO Hai-jun. Research progress on the antitumor effect of flavonoid derivatives[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 913-923.

黄酮类衍生物抗肿瘤作用研究进展
李鑫萍1, 于渼璇1, 况婷瑞1, 延玺1*, 李春颖2*, 郝海军3*
1. 北京师范大学化学学院, 北京 100875;
2. 中国医学科学院北京协和医院妇产科, 北京 100730;
3. 北京化工大学理学院有机化学系, 北京 100029
摘要:
恶性肿瘤是严重危害人类生命健康的疾病,一直是科研工作者的研究重点之一。天然黄酮及其衍生物具有多种生理活性,尤其在抗肿瘤生长方面具有独特生物活性,既可以通过参与干扰肿瘤细胞周期,改变肿瘤细胞线粒体膜电位,促进肿瘤细胞的凋亡,也可以通过提高人体免疫力,减小肿瘤细胞的免疫逃逸,阻止肿瘤转移。在人体内,它们调整生物信号转导,导致促凋亡蛋白表达上调,通过调控血管上皮细胞的生长,阻断肿瘤组织中血管的生成,达到抑制实体肿瘤生长的目的。此类化合物在对多种肿瘤的研究过程中均表现药理活性,有望开发为新型抗肿瘤药物。本文总结了近年来黄酮类化合物在抗肿瘤作用机制及药效学方面的进展,旨在为相关科研工作者提供一定的参考与帮助。
关键词:    黄酮类化合物      癌症      抗肿瘤      天然植物      作用机制     
Research progress on the antitumor effect of flavonoid derivatives
LI Xin-ping1, YU Mei-xuan1, KUANG Ting-rui1, YAN Xi1*, LI Chun-ying2*, HAO Hai-jun3*
1. College of Chemistry, Beijing Normal University, Beijing 100875, China;
2. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China;
3. Department of Organic Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract:
Malignant tumors seriously endanger human life and health, and their treatment has always been a research focus of scientists all over the world. Natural flavonoids and their derivatives have a variety of biological activities, especially regarding antitumor growth, with unique biological activities. They can interfere with the growth cycle of tumor cells, change the mitochondrial membrane potential, promote apoptosis, and can reduce the immune escape of tumor cells and prevent tumor metastasis by improving human immunity. In the human body, they regulate the biological signal transduction, leading to the up-regulation of pro-apoptotic protein expression. They inhibit the growth of solid tumors by regulating the growth of vascular epithelial cells and blocking the formation of blood vessels in tumor tissue. Recent studies have shown that these compounds can play an important role in the treatment of various human tumors and are expected to be developed into new antitumor drugs. This review summarizes the recent research results on the antitumor mechanism of flavonoids and their ability to inhibit tumor growth.
Key words:    flavonoid    cancer    antitumor    plant    mechanism   
收稿日期: 2020-08-07
DOI: 10.16438/j.0513-4870.2020-1296
基金项目: 国家科技重大项目(2014zx09507007-003).
通讯作者: 延玺,Tel:86-10-58806200,E-mail:yanxi@bnu.edu.cn;李春颖,Tel:86-10-69155657,E-mail:LiChunYing@pumch.cn;郝海军,Tel:86-10-64453822,E-mail:hjhao@mail.buct.edu
Email: yanxi@bnu.edu.cn;LiChunYing@pumch.cn;hjhao@mail.buct.edu
相关功能
PDF(1030KB) Free
打印本文
0
作者相关文章
李鑫萍  在本刊中的所有文章
于渼璇  在本刊中的所有文章
况婷瑞  在本刊中的所有文章
延玺  在本刊中的所有文章
李春颖  在本刊中的所有文章
郝海军  在本刊中的所有文章

参考文献:
[1] Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144:646-674.
[2] Zeng JY, Wang XS, Zhang XZ, et al. Research progress in functional metal-organic frameworks for tumor therapy[J]. Acta Chim Sin (化学学报), 2019, 77:1156-1163.
[3] Wang N, Liu S, Yang L, et al. Interpretation on the report of Global Cancer Statistics 2018[J]. J Multidisciplin Cancer Manag (肿瘤综合治疗电子杂志), 2019, 5:87-97.
[4] Liu QH, Liu F. The present situation, problems and policy suggestions of development and policy of Chinese medicine industry[J]. Rev Econ Res (经济研究参考), 2014, 32:39-67.
[5] Biegasiewicz KF, Gordon JS, Rodriguez DA, et al. Development of a general approach to the synthesis of a library of isoflavonoid derivatives[J]. Tetrahedron Lett, 2014, 55:5210-5212.
[6] Caterina F, Antoni S, Silvia M, et al. Flavonoids and platelet aggregation:a brief review[J]. Eur J Pharmacol, 2017, 807:91-101.
[7] Liu R, Zhao B, Wang DE, et al. Nitrogen-containing apigenin analogs:preparation and biological activity[J]. Molecules, 2012, 17:14748-14764.
[8] Zhang L, Liu P, Li L, et al. Identification and antioxidant activity of flavonoids extracted from Xinjiang jujube (Ziziphus jujube Mill.) leaves with ultra-high pressure extraction technology[J]. Molecules, 2018, 24:122.
[9] Cho DY, Lee MK, Kim EA, et al. Analysis of the isoflavone content, antioxidant activity, and SDS-PAGE of cheese analogs produced with different proteolysis and soymilk residue contents[J]. J Korean Soc Appl Biol Chem, 2015, 58:501-509.
[10] Wang LL, Yang FJ, Zhao XH, et al. Effects of nitro- and amino-group on the antioxidant activity of genistein:a theoretical study[J]. Food Chem, 2019, 275:339-345.
[11] Proestos C, Boziaris IS, Nychas GJE, et al. Analysis of flavonoids and phenolic acids in Greek aromatic plants:investigation of their antioxidant capacity and antimicrobial activity[J]. Food Chem, 2005, 95:664-671.
[12] Ana GL, Eva G, Ana V, et al. Flavonoids as anti-inflammatory agents:implications in cancer and cardiovascular disease[J]. Inflamm Res, 2009, 58:537-552.
[13] Valsecchi AE, Franchi S, Panerai AE, et al. Genistein, a natural phytoestrogen from soy, relieves neuropathic pain following chronic constriction sciatic nerve injury in mice:anti-inflammatory and antioxidant activity[J]. J Neurochem, 2008, 107:230-240.
[14] Sánchez I, Gómez-Garibay F, Taboada J, et al. Antiviral effect of flavonoids on the Dengue virus[J]. Phytother Res, 2000, 14:89-92.
[15] Manikanta M, Vikas S, Pramila C, et al. A critical review on anticancer mechanisms of natural flavonoid puerarin[J]. Anticancer Agents Med Chem, 2020, 20:678-686.
[16] Zhu ZS. Anticancer effects of catechin flavonoid in human glioma cells are mediated via autophagy induction, cell cycle arrest, inhibition of cell migration and invasion and targeting MAPK/ERK signalling pathway[J]. J BUON, 2020, 25:1084-1090.
[17] Christian B. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma[J]. Chem Biol Interact, 2020, 325:109124.
[18] Frederik D, Nicola PB, Kevin M, et al. Associations between habitual flavonoid intake and hospital admissions for atherosclerotic cardiovascular disease:a prospective cohort study[J]. Lancet Planet Health, 2019, 3:e450-e459.
[19] Liu YJ, Xue YC. The research progress of flavonoids in plants[J]. Chin Biotechnol (中国生物工程杂志), 2016, 36:81-86.
[20] Pan GQ, Wang BC. Study on antioxidant effects on grease about Saxifrage[J]. J Qinghai Norm Univ (Nat Sci Edit) (青海师范大学学报(自然科学版)), 2007, 4:70-72.
[21] Ding JX, Zhang LS, Zhang L, et al. Saxifrage extract effects on prostate cancer cell apoptosis[J]. Chin J Basic Med Tradit Chin Med (中国中医基础医学杂志), 2005, 11:905, 907.
[22] Chen YJ, Long XY, Pan SJ, et al. Advances in pharmacodynamic mechanisms and SAR studies of flavonoids[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2013, 19:337-344.
[23] Cui YD, Tang Y, Han ZR, et al. The quantitative and qualitative alterations of GAGs induced by 5-hydroxyed nobiletin in cancer cells[J]. J Ocean Univ China (中国海洋大学学报), 2017, 47:66-72.
[24] Zhu DC, Xu LT, Kuang D, et al. Molecular mechanism of apoptosis CEM leukemia cells of Hedyotis diffusa[J]. Chin J Gerontol (中国老年学杂志), 2019, 39:3738-3740.
[25] Duan CH. Separation and Identification of Total Flavonoids of Polygonum Divaricatum L., A Mongolion Herb, and It's Anti-Tumor Mechanisms (蒙药材叉分蓼黄酮类化合物分离鉴定及抗肿瘤作用机制研究)[D]. Harbin:Heilongjiang University of Chinese Medicine, 2019.
[26] Hailiwu RNGL. Antitumor Activity and Mechanism of Alpinia Officinarum Hance Against Stomach Cancer (高良姜抗胃癌作用及机制的探讨)[D]. Urumchi:Xinjiang Medical University, 2019.
[27] Wang TX. Study on Isolation and Identification of Active Ingredients from Citrus Aurantium L. var. Amara Engl. and Their Bioactivities (代代花中有效成分的分离纯化、鉴定及其活性研究)[D]. Guangzhou:South China University of Technology, 2018.
[28] Wang ZY, Zhang L, Zhang YC. Research on anti-tumor mechanism of natural flavonoids[J]. Western J Tradit Chin Med (西部中医药), 2018, 31:138-142.
[29] Zhao X. Pharmacological Mechanism of Inhibition Angiogenesis and Prevention and Treatment of Breast Cancer of Detoxification Particles (清毒颗粒抑制血管新生防治乳腺癌的药理机制)[D]. Beijing:Peking Union Medical College, 2014.
[30] Huang HZ. Effects of Chinese Bayberry Phenolic Compounds on Antioxidant and Anticancer (杨梅酚类化合物抗氧化和抗癌功能及机理研究)[D]. Hangzhou:Zhejiang University, 2015.
[31] Zou XN, Yan J. Advances in anti-tumor chemical constituents and mechanisms of Hedyotis diffusa[J]. Chem Eng (化学工程师), 2020, 34:47-49, 56.
[32] Li M, Zhang HY, Shao HO. Effects of total flavonoids of Hedyotis diffusa on immunity and antioxidant capacity of cervical cancer U14 tumor-bearing mice[J]. J Chin Med Mater (中药材), 2019, 42:1417-1420.
[33] Che HW, Yang HN, Tan XC, et al. Research progress on the tumor cell inhibition activities of different extraction of Oldenlandia diffusa[J]. Asia Pac Tradit Med (亚太传统医药), 2019, 15:191-193.
[34] Bian WS. Advances in the analysis of anti-tumor mechanism and application in hematological diseases of Hedyotis diffusa[J]. J Clin Med Lit (Electron Edit) (临床医药文献电子杂志), 2019, 6:198.
[35] Zhang XQ, Zhao TM, Liu J, et al. Advances in chemical compounds and pharmacological effects of Dendrobii Caulis[J]. Chin Tradit Herb Drugs (中草药), 2018, 49:3174-3182.
[36] Yang N, Jia XB, Zhang ZH, et al. Advance in studies on anti-cancer activity and mechanism of flavonoids[J]. China J Chin Mater Med (中国中药杂志), 2015, 40:373-381.
[37] Luo YY, Li YR, Lei ZX, et al. Antioxidation activities in vitro of Vicenin Ⅱ isolated from Dendrobii Officinalis Caulis and effect on HepG2 cells[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2019, 25:43-50.
[38] Wang XN. The Mechanisms Research of Eupatilin Inhibiting Proliferation of Human Esophageal Cancer Cell TE1(异泽兰黄素抑制食管癌细胞TE1增殖的分子机制研究)[D]. Zhengzhou:Zhengzhou University, 2014.
[39] Sun XR, Chen PP, Lin Y, et al. Research progress of anti-tumor molecular target in natural flavonoids[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2017, 23:218-228.
[40] Hong ZD, Mo ZX. 11 kinds of signal pathways in anti-tumor mechanism of traditional Chinese medicine[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2018, 24:205-218.
[41] Zhang XP, Shao JJ, Ma DL, et al. Research on antitumor active components and mechanisms of natural products[J]. Acta Pharm Sin (药学学报), 2019, 54:1949-1957.
[42] Li X, Sun QG, Zhang WD. Anti-tumor natural products acting on AP-1 signaling pathway[J]. Chin J Pharm (中国医药工业杂志), 2020, 51:305-315.
[43] Xia Y, Lian S, Khoi PN, et al. Chrysin inhibits tumor promoter-induced MMP-9 expression by blocking AP-1via suppression of ERK and JNK pathways in gastric cancer cells[J]. PLoS One, 2015, 10:e0124007.
[44] Sathishkumar G, Bharti R, Jha PK, et al. Dietary flavone chrysin (5,7-dihydroxyflavone ChR) functionalized highly-stable metal nanoformulations for improved anticancer applications[J]. RSC Adv, 2015, 5:89869-89878.
[45] Zheng H, Li S, Pu YJ, et al. Nanoparticles generated by PEG-chrysin conjugates for efficient anticancer drug delivery[J]. Eur J Pharm Biopharm, 2014, 87:454-460.
[46] Sudhan D, Manupati K, Minarul I, et al. In silico design, synthesis and activity of potential drug-like chrysin scaffold-derived selective EGFR inhibitors as anticancer agents[J]. Comput Biol Chem, 2019, 83:107156.
[47] Zhang WH, Chen S, Liu XL, et al. Design, synthesis and evaluation of structurally diverse chrysin-chromene-spirooxindole hybrids as anticancer agents[J]. Bioorg Med Chem, 2019, 27:115109.
[48] Shipra Y, Jai DS. Synthesis and preliminary biological evaluation for the anticancer activity of organochalcogen (S/Se) tethered chrysin based organometallic Ru (η6-p-cymene) complexes[J]. J Biomol Struct Dyn, 2019, 37:3337-3353.
[49] Baidya D, Kushwaha J, Mahadik K, et al. Chrysin loaded folate conjugated PF127-F68 mixed micelles with enhanced oral bioavailability and anticancer activity against human breast cancer cells[J]. Drug Dev Ind Pharm, 2019, 45:852-860.
[50] Li Y. Design, Synthesis and Anticancer Activity of Agents Based on Flavonoids Molecular Skeleton (基于黄酮骨架的氨基酸衍生物的合成及其抗癌活性研究)[D]. Hengyang:University of South China, 2019.
[51] Wang JN, Li X, Peng BY, et al. Chrysin combined with cisplatin regulates the apoptosis of HepG2 through JNK phosphorylation[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2019, 30:775-778.
[52] Liu YM, Li Y, Xiao J, et al. Design, synthesis, and preliminary biological evaluation of chrysin amino acid derivatives that induce apoptosis and suppress cell migration[J]. J Asian Nat Prod Res, 2020, 22:547-561.
[53] Wang HJ, Zhou YY, Liu XL, et al. Regioselective synthesis and evaluation of 2-amino 3-cyano chromene-chrysin hybrids as potential anticancer agents[J]. Bioorg Med Chem Lett, 2020, 30:127087.
[54] Pan YJ, Xu PY, Chen BQ, et al. Supercritical antisolvent process-assisted fabrication of chrysin-polyvinylpyrrolidone sub-microparticles for improved anticancer efficiency[J]. J Supercrit Fluid, 2020, 162:104847.
[55] Chen N, Wang R, Lu LJ, et al. Synthesis of chrysin derivatives and screening of antitumor activity[J]. J Asian Nat Prod Res, 2020, 22:444-451.
[56] Sara R, Maryam M, Samira M, et al. Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of curcumin and chrysin:possible application in prevention of breast cancer local recurrence[J]. J Drug Deliv Sci Tech, 2020, 55:101402.
[57] Zhuo MDZ, Xiu CJ. The quality standard research of Saxifraga tangutica Engl.[J]. Chin J Ethnomed Ethnopharm (中国民族医药杂志), 2015, 21:51-52.
[58] Cui W, Zeng QY. Antitumor effect of flavornoids from Saxifraga tangutica Engl. on H22 hepatoma mice[J]. Chin Vet Sci (中国兽医科学), 2020, 50:262-268.
[59] Lv M, Li XY, Ye F, et al. Research progress on pharmacological research of Hypericum attenuatum[J]. Drug Evaluat Res (药物评价研究), 2019, 42:2119-2124.
[60] Zhao YJ, Zhou Y, Wang JX, et al. Identification of pharmacognosy of Hypericum attenuatum Choisy. and Hypericum ascyrom L.[J]. Chin Arch Tradit Chin Med (中华中医药学刊), 2019, 37:187-191.
[61] Liu YY, Xue Y, Zhang XF, et al. The response surface method optimization Hypericum attenuatum extraction technology of flavone reflux method[J]. Heilongjiang Anim Sci Vet Med (黑龙江畜牧兽医), 2017, 06:164-166, 284.
[62] Jin DX, Luo XG, Zhang KQ, et al. Ultrasonic extraction of total flavonoids from Hypericum attenuatum Choisy and its antioxidant activities[J]. J Tianjin Univ Sci Tech (天津科技大学学报), 2017, 32:10-16.
[63] Li DY, Du G, Gong XP, et al. Hyperattenins L and M, two new polyprenylated acylphloroglucinols with adamantyl and homoadamantyl core structures from Hypericum attenuatum[J]. Fitoterapia, 2018, 125:130-134.
[64] Zhou ZB, Zhang YM, Luo JG, et al. Cytotoxic polycyclic polyprenylated acylphloroglucinol derivatives and xanthones from Hypericum attenuatum[J]. Phytochem Lett, 2016, 15:215-219.
[65] Li QW. Study on the Effect and Mechanism of Hypericum Perforatum on Human Lung Cancer Cell Line H460(乌腺金丝桃对人肺癌H460细胞株的影响和作用机理研究)[D]. Harbin:Heilongjiang University of Chinese Medicine, 2017.
[66] Li J, Li X, Wang L, et al. Experimental study on protective effect and related mechanisms of Hypericum Attenuatum Choisy and Angelica sinensis in MIRI rats[J]. Liaoning J Tradit Chin Med (辽宁中医杂志), 2019, 46:849-852.
[67] Wang CX. Study on the Effect and Mechanism of the Compatibility of the Gentianella Acuta and the Hypericum Attenuatum Choisy on Human Lung Cancer A549 Cells (尖叶假龙胆与乌腺金丝桃配伍对人肺癌A549细胞影响及其作用机制的研究)[D]. Harbin:Heilongjiang University of Chinese Medicine, 2017.
[68] Wang RY, Ye Y. Research progress of formononetin for anticancer drug development[J]. Cancer Res Prev Treat (肿瘤防治研究), 2019, 46:183-187.
[69] Liu XH, Huang ZX, Xu DQ, et al. Preparation and cytotoxicity of hydroxypropyl-β-cyclodextrin functionalized multiwalled carbon nanotubes loaded with formononetin[J]. J Funct Mater (功能材料), 2018, 49:1071-1077, 1082.
[70] Liu XH. Construction of Cyclodextrin Functionalized Carbon Nanotubes as Drug Delivery System and Preliminary Inquiry into Their Anti-Tumor Effect (环糊精功能化碳纳米管给药系统的构建及其抗肿瘤作用的初步探究)[D]. Zhongshan:Guangdong Pharmaceutical University, 2018.
[71] Lei YY. Study on the Antitumor Effect of Formononetin Targeting USP5 Protein (芒柄花黄素靶向USP5蛋白的抗肿瘤作用研究)[D]. Tianjin:Nankai University, 2018.
[72] Ren J, Xu HJ, Cheng H, et al. Synthesis and antitumor activity of formononetin nitrogen mustard derivatives[J]. Eur J Med Chem, 2012, 54:175-187.
[73] Fu DJ, Zhang L, Song J, et al. Design and synthesis of formononetin-dithiocarbamate hybrids that inhibit growth and migration of PC-3 cells via MAPK/Wnt signaling pathways[J]. Eur J Med Chem, 2017, 127:87-99.
[74] Liu LN, Li SM, Wu D, et al. Advances in study on antitumor effect of formononetin[J]. Heilongjiang Med J (黑龙江医药), 2017, 30:953-956.
[75] Qi CL, Li LB, Lin L, et al. Advances in study on a variety of malignant tumor of formononetin[J]. Shandong Med J (山东医药), 2017, 57:107-109.
[76] Liu CQ. Study on the Active Ingredients of Jiuwei Tongqiao Decoction on Brain Neuroglial Tumor by Cell Membrane Chromatography (细胞膜色谱法研究九味通窍汤抗脑神经胶质瘤的效应成分)[D]. Nanjing:Nanjing Medical University, 2017.
[77] Dong CC, Zhong L, Zhang GY, et al. Inhibitory effect and mechanism of formononetin on nude mouse model bearing human gastric cancer cells MKN-45[J]. Chongqing Med J (重庆医学), 2016, 45:4482-4483, 4486.
[78] Zhao XG. The Effect of Formononein on the Proliferation of Human Prostate Carcinoma PC- 3 Cells and Its Mechanism芒柄花黄素对前列腺癌PC-3细胞增殖的影响及其作用机制的探讨)[D]. Guilin:Guilin Medical University, 2016.
[79] Hu W. The Role of Formononetin on Tumor Growth in the Human Osteosarcoma and the Study of Its Mechanism (芒柄花黄素在骨肉瘤增殖凋亡中的作用及其机制的实验研究)[D]. Nanning:Guangxi Medical University, 2016.
[80] Li LL, Huang JZ. Advances in pharmacological studies of calycosin-7-O-β-D-glucoside[J]. J Hainan Med Univ (海南医学院学报), 2020, 26:156-160.
[81] Yang LQ. Pharmacological effect analysis and clinical application evaluation of Chinese medicine Astragalus[J]. Chin J Conval Med (中国疗养医学), 2019, 28:660-662.
[82] Mo ZQ, Jing N, Chen XJ, et al. Anti-tumor mechanism of Kang'ai injection based on network pharmacology[J]. J Chin Med Mater (中药材), 2019, 42:2385-2393.
[83] Li SS, Sun Y, Huang J, et al. Anti-tumor effects and mechanisms of Astragalus membranaceus (AM) and its specific immunopotentiation:status and prospect[J]. J Ethnopharmacol, 2020, 258:112797.
[84] Zhang Q, Li J, Zhang Q, et al. A comparative study on anti-cancer effects of Astragalus membranaceus, Sophora flavescens and Gleditsia sinensis[J]. Inf Tradit Chin Med (中医药信息), 2020, 37:48-54.
[85] Yang B, Yu GH, Li MY, et al. Mechanism of flavonoid components in Astragali Radix in inhibiting tumor growth and immunoregulation in C57BL/6 tumor bearing mice based on "invigorating Qi for consolidation of exterior"[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:5184-5190.
[86] Ni L, Liang WJ, Zhang WT, et al. Screening of tonic Chinese herbs with anti-angiogenic activity based on zebrafish model[J]. Cent South Pharm (中南药学), 2020, 18:422-426.
[87] Zhang DQ. A Study of Total Flavonoids of Astragalus and It's Constituents on Inhibiting Effects and Mechanisms for Carcinoma Cells (黄芪总黄酮及其活性成分对肿瘤细胞的抑制作用与机理研究)[D]. Beijing:China PLA General Hospital Military Postgrad Medical College, 2010.
[88] Zhang DM. Effects of calycosin-7-O-β-D-glucoside on cell apoptosis in cervical cancer HeLa cells and expression of Bcl-2/Bax[J]. Chin Tradit Herb Drugs (中草药), 2015, 46:1498-1502.
相关文献:
1.王庆华, 杜婷婷, 张智慧, 季鸣, 胡海宇, 陈晓光.绿原酸的药理作用及机制研究进展[J]. 药学学报, 2020,55(10): 2273-2280
2.高丽娜, 乔宏志, 胡立宏.强心苷抗肿瘤制剂的研究进展[J]. 药学学报, 2020,55(7): 1528-1539
3.张晓平, 邵骏菁, 马大龙, 刘帆, 刘苗苗, 崔清华.天然药物抗肿瘤活性成分及其作用机制研究进展[J]. 药学学报, 2019,54(11): 1949-1957
4.林菁菁, 杨亚军, 沈珑瑛, 潘显道.抗肿瘤药玫瑰树碱及其衍生物的合成和药理研究进展[J]. 药学学报, 2017,52(9): 1387-1396
5.孟艳秋, 刘立伟, 刘冬莹, 宋艳玲.Survivin抑制剂研究进展[J]. 药学学报, 2016,51(3): 347-355
6.唐克, 杨瀚泽, 李燕, 田康, 李超, 周琬琪, 牛非, 冯志强, 陈晓光.小分子靶向化合物T03的抗肿瘤作用及机制研究[J]. 药学学报, 2014,49(6): 861-868
7.许文彦 赵思蒙 曾广智 贺文军 徐会敏 谭宁华.一些重要天然活性环肽化学和生物活性研究进展[J]. 药学学报, 2012,47(3): 271-279
8.杨燕 王洪庆 陈若芸.桑叶中的黄酮类化合物[J]. 药学学报, 2010,45(1): 77-81
9.尚 海 潘 莉 杨 澍 陈 虹 程卯生.微管蛋白抑制剂的研究进展[J]. 药学学报, 2010,45(9): 1078-1088