药学学报, 2021, 56(4): 939-948
引用本文:
郝舒姝, 姜晨晨, 冯黎黎. 干扰素调节因子调控巨噬细胞极化及其在疾病中的作用研究进展[J]. 药学学报, 2021, 56(4): 939-948.
HAO Shu-shu, JIANG Chen-chen, FENG Li-li. Interferon-regulatory factors regulate macrophage polarization and its role in diseases[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 939-948.

干扰素调节因子调控巨噬细胞极化及其在疾病中的作用研究进展
郝舒姝1,2, 姜晨晨1, 冯黎黎1*
1. 南京医科大学药学院, 江苏省心脑血管药物重点实验室, 江苏 南京 211166;
2. 南京医科大学口腔医学院, 江苏 南京 211166
摘要:
巨噬细胞具有高度异质性和可塑性。在不同类型疾病或者同一疾病的不同阶段,巨噬细胞能够进行表型转化,从而发挥不同的功能。因此,针对不同疾病对巨噬细胞表型进行干预的治疗策略正在成为攻克炎症性疾病、自身免疫疾病及肿瘤等疾病的新手段,其极化调控机制的研究显得越来越重要。干扰素调节因子(interferon regulatory factors,IRFs)在调控巨噬细胞成熟及表型分化等方面发挥着重要作用。本文将根据近年的研究进展,对IRFs的蛋白结构以及激活模式进行总结,在此基础上对IRFs家族各个分子通过调控巨噬细胞表型参与疾病进程的作用机制、信号调控网络以及靶向药物研发前景展开综述,为相关疾病治疗探索新的潜在靶标。
关键词:    干扰素调节因子      巨噬细胞极化      炎症性疾病      药物靶标     
Interferon-regulatory factors regulate macrophage polarization and its role in diseases
HAO Shu-shu1,2, JIANG Chen-chen1, FENG Li-li1*
1. Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China;
2. School of Stomatology, Nanjing Medical University, Nanjing 211166, China
Abstract:
Macrophages are highly plastic and heterogeneous. In different types of inflammatory diseases, or at different stages of the same disease, macrophages can undergo phenotypic transformation to elicit different functions. Hence, exploring new regulatory mechanism of macrophage polarization and seeking for new key mediators will lay the foundation for the diagnosis and treatment of macrophage-related diseases, such as inflammatory diseases, autoimmune diseases, and cancer. Interferon regulatory factors (IRFs) have been reported to play an important role in the maturation and differentiation of macrophages. In this review, we will describe the structure and modulation pattern of IRFs, and then further summarize the molecular mechanism and signal regulation network of IRFs in pathological processes of related diseases through controlling macrophage polarization. Our review will explore the new therapeutic strategy and potential drug targets for related diseases.
Key words:    interferon regulatory factor    macrophage polarization    inflammatory disease    drug target   
收稿日期: 2020-11-17
DOI: 10.16438/j.0513-4870.2020-1773
基金项目: 国家自然科学基金资助项目(82003764);江苏省高校自然科学研究项目(19KJB350001).
通讯作者: 冯黎黎,Tel:86-25-86868467,E-mail:fenglilinjmu@njmu.edu.cn
Email: fenglilinjmu@njmu.edu.cn
相关功能
PDF(951KB) Free
打印本文
0
作者相关文章
郝舒姝  在本刊中的所有文章
姜晨晨  在本刊中的所有文章
冯黎黎  在本刊中的所有文章

参考文献:
[1] Ginhoux F, Schultze JL, Murray PJ, et al. New insights into the multidimensional concept of macrophage ontogeny, activation and function[J]. Nat Immunol, 2016, 17:34-40.
[2] Gordon S, Martinez FO. Alternative activation of macrophages:mechanism and functions[J]. Immunity, 2010, 32:593-604.
[3] Wang F, Zhang S, Jeon R, et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity[J]. EBioMedicine, 2018, 30:303-316.
[4] Miyamoto M, Fujita T, Kimura Y, et al. Regulated expression of a gene encoding a nuclear factor, IRF-1, that specifically binds to IFN-beta gene regulatory elements[J]. Cell, 1988, 54:903-913.
[5] Negishi H, Taniguchi T, Yanai H. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family[J]. Cold Spring Harb Perspect Biol, 2018, 10:a028423.
[6] Escalante CR, Yie J, Thanos D, et al. Structure of IRF-1 with bound DNA reveals determinants of interferon regulation[J]. Nature, 1998, 391:103-106.
[7] Chen W, Royer WE. Structural insights into interferon regulatory factor activation[J]. Cell Signal, 2010, 22:883-887.
[8] Remesh SG, Santosh V, Escalante CR. Structural studies of IRF4 reveal a flexible autoinhibitory region and a compact linker domain[J]. J Biol Chem, 2015, 290:27779-27790.
[9] Yamamoto H, Lamphier MS, Fujita T, et al. The oncogenic transcription factor IRF-2 possesses a transcriptional repression and a latent activation domain[J]. Oncogene, 1994, 9:1423-1428.
[10] Meraro D, Hashmueli S, Koren B, et al. Protein-protein and DNA-protein interactions affect the activity of lymphoid-specific IFN regulatory factors[J]. J Immunol, 1999, 163:6468-6478.
[11] Antonczyk A, Krist B, Sajek M, et al. Direct inhibition of IRF-dependent transcriptional regulatory mechanisms associated with disease[J]. Front Immunol, 2019, 10:1176.
[12] Li P, Wong JJ, Sum C, et al. IRF8 and IRF3 cooperatively regulate rapid interferon-beta induction in human blood monocytes[J]. Blood, 2011, 117:2847-2854.
[13] Szelag M, Piaszyk-Borychowska A, Plens-Galaska M, et al. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease[J]. Oncotarget, 2016, 7:48788-48812.
[14] Lin R, Yang L, Arguello M, et al. A CRM1-dependent nuclear export pathway is involved in the regulation of IRF-5 subcellular localization[J]. J Biol Chem, 2005, 280:3088-3095.
[15] Thumbigere-Math V, Foster BL, Bachu M, et al. Inactivating mutation in IRF8 promotes osteoclast transcriptional programs and increases susceptibility to tooth root resorption[J]. J Bone Miner Res, 2019, 34:1155-1168.
[16] Huang W, Horvath E, Eklund EA. PU.1, interferon regulatory factor (IRF) 2, and the interferon consensus sequence-binding protein (ICSBP/IRF8) cooperate to activate NF1 transcription in differentiating myeloid cells[J]. J Biol Chem, 2007, 282:6629-6643.
[17] Lin R, Hiscott J. A role for casein kinase Ⅱ phosphorylation in the regulation of IRF-1 transcriptional activity[J]. Mol Cell Biochem, 1999, 191:169-180.
[18] Mancino A, Natoli G. Specificity and function of IRF family transcription factors:insights from genomics[J]. J Interferon Cytokine Res, 2016, 36:462-469.
[19] van der Stoep N, Quinten E, Marcondes Rezende M, et al. E47, IRF-4, and PU.1 synergize to induce B-cell-specific activation of the class Ⅱ transactivator promoter Ⅲ (CⅡTA-PⅢ)[J]. Blood, 2004, 104:2849-2857.
[20] Neish AS, Read MA, Thanos D, et al. Endothelial interferon regulatory factor 1 cooperates with NF-kappa B as a transcriptional activator of vascular cell adhesion molecule 1[J]. Mol Cell Biol, 1995, 15:2558-2569.
[21] Sharf R, Meraro D, Azriel A, et al. Phosphorylation events modulate the ability of interferon consensus sequence binding protein to interact with interferon regulatory factors and to bind DNA[J]. J Biol Chem, 1997, 272:9785-9792.
[22] Panne D, McWhirter SM, Maniatis T, et al. Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch[J]. J Biol Chem, 2007, 282:22816-22822.
[23] Gu M, Zhang T, lin W, et al. Protein phosphatase PP1 negatively regulates the Toll-like receptor- and RIG-I-like receptor-triggered production of type I interferon by inhibiting IRF3 phosphorylation at serines 396 and 385 in macrophage[J]. Cell Signal, 2014, 26:2930-2939.
[24] Meng F, Zhou R, Wu S, et al. Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation[J]. Genes Dev, 2016, 30:1086-1100.
[25] Gao L, Wang L, Dai T, et al. Tumor-derived exosomes antagonize innate antiviral immunity[J]. Nat Immunol, 2018, 19:233-245.
[26] Sharma S, tenOever BR, Grandvaux N, et al. Triggering the interferon antiviral response through an IKK-related pathway[J]. Science, 2003, 300:1148-1151.
[27] Ikushima H, Negishi H, Taniguchi T. The IRF family transcription factors at the interface of innate and adaptive immune responses[J]. Cold Spring Harb Symp Quant Biol, 2013, 78:105-116.
[28] Liu H, Zhou RH, Liu Y, et al. HIV infection suppresses TLR3 activation-mediated antiviral immunity in microglia and macrophages[J]. Immunology, 2020, 160:269-279.
[29] Lopez-Pelaez M, Lamont DJ, Peggie M, et al. Protein kinase IKKbeta-catalyzed phosphorylation of IRF5 at Ser462 induces its dimerization and nuclear translocation in myeloid cells[J]. Proc Natl Acad Sci U S A, 2014, 111:17432-17437.
[30] Ren J, Chen X, Chen ZJ. IKKbeta is an IRF5 kinase that instigates inflammation[J]. Proc Natl Acad Sci U S A, 2014, 111:17438-17443.
[31] Balkhi MY, Fitzgerald KA, Pitha PM. Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination[J]. Mol Cell Biol, 2008, 28:7296-7308.
[32] Balkhi MY, Fitzgerald KA, Pitha PM. IKKalpha negatively regulates IRF-5 function in a MyD88-TRAF6 pathway[J]. Cell Signal, 2010, 22:117-127.
[33] Komander D, Rape M. The ubiquitin code[J]. Annu Rev Biochem, 2012, 81:203-229.
[34] Wang P, Zhao W, Zhao K, et al. TRIM26 negatively regulates interferon-beta production and antiviral response through polyubiquitination and degradation of nuclear IRF3[J]. PLoS Pathog, 2015, 11:e1004726.
[35] Kim D, Lee H, Koh J, et al. Cytosolic pellino-1-mediated K63-linked ubiquitination of IRF5 in M1 macrophages regulates glucose intolerance in obesity[J]. Cell Rep, 2017, 20:832-845.
[36] Garvin AJ, Khalaf AHA, Rettino A, et al. GSK3beta-SCFFBXW7alpha mediated phosphorylation and ubiquitination of IRF1 are required for its transcription-dependent turnover[J]. Nucleic Acids Res, 2019, 47:4476-4494.
[37] Maruyama S, Sumita K, Shen H, et al. Identification of IFN regulatory factor-1 binding site in IL-12 p40 gene promoter[J]. J Immunol, 2003, 170:997-1001.
[38] Liu J, Cao S, Herman LM, et al. Differential regulation of interleukin (IL)-12 p35 and p40 gene expression and interferon (IFN)-gamma-primed IL-12 production by IFN regulatory factor 1[J]. J Exp Med, 2003, 198:1265-1276.
[39] Nguyen H, Teskey L, Lin R, et al. Identification of the secretory leukocyte protease inhibitor (SLPI) as a target of IRF-1 regulation[J]. Oncogene, 1999, 18:5455-5463.
[40] Carey M. The enhanceosome and transcriptional synergy[J]. Cell, 1998, 92:5-8.
[41] Elser B, Lohoff M, Kock S, et al. IFN-gamma represses IL-4 expression via IRF-1 and IRF-2[J]. Immunity, 2002, 17:703-712.
[42] Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses[J]. Nat Immunol, 2011, 12:231-238.
[43] Dalmas E, Toubal A, Alzaid F, et al. Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity[J]. Nat Med, 2015, 21:610-618.
[44] Feng D, Sangster-Guity N, Stone R, et al. Differential requirement of histone acetylase and deacetylase activities for IRF5-mediated proinflammatory cytokine expression[J]. J Immunol, 2010, 185:6003-6012.
[45] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization:enabling diversity with identity[J]. Nat Rev Immunol, 2011, 11:750-761.
[46] Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors[J]. Nature, 2005, 434:243-249.
[47] Hedl M, Yan J, Abraham C. IRF5 and IRF5 disease-risk variants increase glycolysis and human M1 macrophage polarization by regulating proximal signaling and Akt2 activation[J]. Cell Rep, 2016, 16:2442-2455.
[48] Mancino A, Termanini A, Barozzi I, et al. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages[J]. Genes Dev, 2015, 29:394-408.
[49] Xu H, Zhu J, Smith S, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization[J]. Nat Immunol, 2012, 13:642-650.
[50] Gupta M, Shin DM, Ramakrishna L, et al. IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes[J]. Nat Commun, 2015, 6:6379.
[51] Terry RL, Deffrasnes C, Getts DR, et al. Defective inflammatory monocyte development in IRF8-deficient mice abrogates migration to the West Nile virus-infected brain[J]. J Innate Immun, 2015, 7:102-112.
[52] Kessler DS, Veals SA, Fu XY, et al. Interferon-alpha regulates nuclear translocation and DNA-binding affinity of ISGF3, a multimeric transcriptional activator[J]. Genes Dev, 1990, 4:1753-1765.
[53] Platanitis E, Demiroz D, Schneller A, et al. A molecular switch from STAT2-IRF9 to ISGF3 underlies interferon-induced gene transcription[J]. Nat Commun, 2019, 10:2921.
[54] Ganta VC, Choi MH, Kutateladze A, et al. A microRNA93-interferon regulatory factor-9-immunoresponsive gene-1-itaconic acid pathway modulates M2-like macrophage polarization to revascularize ischemic muscle[J]. Circulation, 2017, 135:2403-2425.
[55] Hayakawa K, Okazaki R, Morioka K, et al. Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia after spinal cord injury[J]. J Neurosci Res, 2014, 92:1647-1658.
[56] Tarassishin L, Suh HS, Lee SC. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway[J]. J Neuroinflammation, 2011, 8:187.
[57] El Chartouni C, Schwarzfischer L, Rehli M. Interleukin-4 induced interferon regulatory factor (Irf) 4 participates in the regulation of alternative macrophage priming[J]. Immunobiology, 2010, 215:821-825.
[58] Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection[J]. Nat Immunol, 2010, 11:936-944.
[59] Negishi H, Fujita Y, Yanai H, et al. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program[J]. Proc Natl Acad Sci U S A, 2006, 103:15136-15141.
[60] Harada H, Fujita T, Miyamoto M, et al. Structurally similar but functionally distinct factors, IRM and IRF2, bind to the same regulatory elements of IFN and IFN-inducible genes[J]. Cell, 1989, 58:729-739.
[61] Klune JR, Dhupar R, Kimura S, et al. Interferon regulatory factor-2 is protective against hepatic ischemia-reperfusion injury[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303:G666-G673.
[62] Cuesta N, Salkowski CA, Thomas KE, et al. Regulation of lipopolysaccharide sensitivity by IFN regulatory factor-2[J]. J Immunol, 2003, 170:5739-5747.
[63] Fehr T, Schoedon G, Odermatt B, et al. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis[J]. J Exp Med, 1997, 185:921-931.
[64] Loi P, Yuan Q, Torres D, et al. Interferon regulatory factor 3 deficiency leads to interleukin-17-mediated liver ischemia-reperfusion injury[J]. Hepatology, 2013, 57:351-361.
[65] Kumari M, Wang X, Lantier L, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning[J]. J Clin Invest, 2016, 126:2839-2854.
[66] Yasuda K, Richez C, Maciaszek JW, et al. Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF)5 and IRF7 dependent and is required for IL-6 production[J]. J Immunol, 2007, 178:6876-6885.
[67] Steinhagen F, McFarland AP, Rodriguez LG, et al. IRF-5 and NF-kappaB p50 co-regulate IFN-beta and IL-6 expression in TLR9-stimulated human plasmacytoid dendritic cells[J]. Eur J Immunol, 2013, 43:1896-1906.
[68] Ouyang X, Negishi H, Takeda R, et al. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRF5 activation[J]. Biochem Biophys Res Commun, 2007, 354:1045-1051.
[69] Dong J, Ma Q. Macrophage polarization and activation at the interface of multi-walled carbon nanotube-induced pulmonary inflammation and fibrosis[J]. Nanotoxicology, 2018, 12:153-168.
[70] Wei J, Tang D, Lu C, et al. IRF5 deficiency in myeloid cells prevents necrotizing enterocolitis by inhibiting M1 macrophage polarization[J]. Mucosal Immunol, 2019, 12:888-896.
[71] Guo M, Yan R, Yao H, et al. IFN regulatory factor 1 mediates macrophage pyroptosis induced by oxidized low-density lipoprotein in patients with acute coronary syndrome[J]. Mediators Inflamm, 2019, 2019:2917128.
[72] Langlais D, Barreiro LB, Gros P. The macrophage IRF8/IRF1 regulome is required for protection against infections and is associated with chronic inflammation[J]. J Exp Med, 2016, 213:585-603.
[73] Matta B, Song S, Li D, et al. Interferon regulatory factor signaling in autoimmune disease[J]. Cytokine, 2017, 98:15-26.
[74] Karami J, Aslani S, Jamshidi A, et al. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review[J]. Gene, 2019, 702:8-16.
[75] Muller-Ladner U, Pap T, Gay RE, et al. Mechanisms of disease:the molecular and cellular basis of joint destruction in rheumatoid arthritis[J]. Nat Clin Pract Rheumatol, 2005, 1:102-110.
[76] Ciesla M, Kolarz B, Majdan M, et al. IRF5 promoter methylation as a new potential marker of rheumatoid arthritis[J]. Pol Arch Intern Med, 2019, 129:370-376.
[77] Panchanathan R, Liu H, Liu H, et al. Distinct regulation of murine lupus susceptibility genes by the IRF5/Blimp-1 axis[J]. J Immunol, 2012, 188:270-278.
[78] Lazzari E, Jefferies CA. IRF5-mediated signaling and implications for SLE[J]. Clin Immunol, 2014, 153:343-352.
[79] Heusinkveld M, van der Burg SH. Identification and manipulation of tumor associated macrophages in human cancers[J]. J Transl Med, 2011, 9:216.
[80] Xie C, Liu C, Wu B, et al. Effects of IRF1 and IFN-beta interaction on the M1 polarization of macrophages and its antitumor function[J]. Int J Mol Med, 2016, 38:148-160.
[81] Nascimento FR, Gomes EA, Russo M, et al. Interferon regulatory factor (IRF)-1 is a master regulator of the cross talk between macrophages and L929 fibrosarcoma cells for nitric oxide dependent tumoricidal activity[J]. PLoS One, 2015, 10:e0117782.
[82] Jefferies CA. Regulating IRFs in IFN driven disease[J]. Front Immunol, 2019, 10:325.
[83] Romieu-Mourez R, Solis M, Nardin A, et al. Distinct roles for IFN regulatory factor (IRF)-3 and IRF-7 in the activation of antitumor properties of human macrophages[J]. Cancer Res, 2006, 66:10576-10585.
[84] Solis M, Goubau D, Romieu-Mourez R, et al. Distinct functions of IRF-3 and IRF-7 in IFN-alpha gene regulation and control of anti-tumor activity in primary macrophages[J]. Biochem Pharmacol, 2006, 72:1469-1476.
[85] Wang Y, Liu T, Yang N, et al. Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis[J]. Oncol Rep, 2016, 36:3522-3528.
[86] Zhu J, Smith K, Hsieh PN, et al. High-throughput screening for TLR3-IFN regulatory factor 3 signaling pathway modulators identifies several antipsychotic drugs as TLR inhibitors[J]. J Immunol, 2010, 184:5768-5776.
[87] Nikodemova M, Watters JJ, Jackson SJ, et al. Minocycline down-regulates MHC Ⅱ expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaⅡ[J]. J Biol Chem, 2007, 282:15208-15216.
[88] Jankovic V, Samardzic T, Stosic-Grujicic S, et al. Cell-specific inhibition of inducible nitric oxide synthase activation by leflunomide[J]. Cell Immunol, 2000, 199:73-80.
[89] Kao TK, Ou YC, Lin SY, et al. Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia[J]. J Nutr Biochem, 2011, 22:612-624.
[90] Aziz N, Son YJ, Cho JY. Thymoquinone Suppresses IRF-3-mediated expression of type I interferons via suppression of TBK1[J]. Int J Mol Sci, 2018, 19:1355.
[91] Fitzpatrick JM, Minogue E, Curham L, et al. MyD88-dependent and -independent signalling via TLR3 and TLR4 are differentially modulated by delta(9)-tetrahydrocannabinol and cannabidiol in human macrophages[J]. J Neuroimmunol, 2020, 343:577217.
[92] Chen TF, Hsu JT, Wu KC, et al. A systematic identification of anti-inflammatory active components derived from Mu Dan Pi and their applications in inflammatory bowel disease[J]. Sci Rep, 2020, 10:17238.