药学学报, 2021, 56(4): 983-995
王继超, 杨采彬, 卓伊琳, 梁冲, 王俊钢, 董升, 李博腾, 张淑华, 张国刚*. MDM2-p53抑制剂的研究进展[J]. 药学学报, 2021, 56(4): 983-995.
WANG Ji-chao, YANG Cai-bin, ZHUO Yi-lin, LIANG Chong, WANG Jun-gang, DONG Sheng, LI Bo-teng, ZHANG Shu-hua, ZHANG Guo-gang*. Recent advances of MDM2-p53 inhibitors[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 983-995.

王继超, 杨采彬, 卓伊琳, 梁冲, 王俊钢, 董升, 李博腾, 张淑华, 张国刚*
沈阳药科大学中药学院, 辽宁 沈阳 110016
蛋白-蛋白相互作用(protein-protein interaction,PPI)参与包括细胞间的相互作用以及代谢和发育控制等多种生物学过程。PPI的错误调控、翻译后修饰和干扰与多种人类疾病有关,使得这些相互作用的调节成为药物发现的一个非常有吸引力的领域。其中,MDM2-p53蛋白与蛋白的相互作用是近年来的研究热点,在肿瘤的治疗中发挥着重要的作用,但遗憾的是国内外都没有该抑制剂上市。本文综述了近年来有关MDM2-p53抑制剂的研究进展并讨论了临床上有应用前景的MDM2-p53抑制剂。
关键词:    蛋白-蛋白相互作用      MDM2-p53      抑制剂      研究进展      临床应用     
Recent advances of MDM2-p53 inhibitors
WANG Ji-chao, YANG Cai-bin, ZHUO Yi-lin, LIANG Chong, WANG Jun-gang, DONG Sheng, LI Bo-teng, ZHANG Shu-hua, ZHANG Guo-gang*
School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
Protein-protein interactions (PPI) are involved in a variety of biological processes, including cell-to-cell interactions, metabolism and development control. The misregulation, post-translational modification and interference of PPI are related to a variety of human diseases, making the regulation of these interactions a very attractive field of drug discovery. In recent years, the interaction between MDM2 and p53 has become a research hotspot, which plays an important role in the treatment of tumors. But unfortunately there are no such inhibitors approved all over the world. In this view, recent advances of MDM2-p53 inhibitors were briefly described and its inhibitors with potential therapeutic activities in clinical studies were introduced.
Key words:    protein-protein interaction    MDM2-p53    inhibitor    recent advance    clinical study   
收稿日期: 2020-09-04
DOI: 10.16438/j.0513-4870.2020-1454
基金项目: 沈阳药科大学大学生创新创业训练计划国家级项目(202010163023).
通讯作者: 张国刚,Tel:86-24-23986511,E-mail:zggth@163.com
Email: zggth@163.com
PDF(1322KB) Free
王继超  在本刊中的所有文章
杨采彬  在本刊中的所有文章
卓伊琳  在本刊中的所有文章
梁冲  在本刊中的所有文章
王俊钢  在本刊中的所有文章
董升  在本刊中的所有文章
李博腾  在本刊中的所有文章
张淑华  在本刊中的所有文章
张国刚*  在本刊中的所有文章

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:Cancer J Clin, 2018, 68:394-4234.
[2] Fan J, Zhang HL, Tan CY, et al. Small molecules targeting tumor apoptosis related proteins and genes[J]. Chem Prog (化学进展), 2007, 19:120-129.
[3] Lane DP. Cancer. p53, guardian of the genome[J]. Nature, 1992, 358:15-16.
[4] Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells[J]. Cell, 1979, 17:43-52.
[5] Hainaut P, Hollstein M. The p53 tumor suppressor gene:the first ten thousand mutations[J]. Adv Cancer Res, 2000, 77:81-137.
[6] Cahilly-Snyder L, Yang-Feng T, Francke U, et al. Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line[J]. Somat Cell Mol Genet, 1987, 13:235-244.
[7] Piette J, Neel H, Maréchal V. MDM2:keeping p53 under control[J]. Oncogene, 1997, 15:1001-1010.
[8] Hanazono K, Natsugoe S, Stein H, et al. Distribution of p53 mutations in esophageal and gastric carcinomas and the relationship with p53 expression[J]. Oncol Rep, 2006, 15:821-824.
[9] Zhao YH, Yu HY, Hu WW. The regulation of MDM2 oncogene and its impact on human cancers[J]. Acta Biochem Biophys Sin, 2014, 46:180-189.
[10] Michael D, Oren M. The p53-MDM2 module and the ubiquitin system[J]. Semin Cancer Biol, 2003, 13:49-58.
[11] Shi ZH, Zhang SL, Zhang QG. Binding free energy insight into interaction mechanism of inhibitor PDIQ with MDM2[J]. J Atom Mol Phys (原子与分子物理学报), 2014, 31:618-623.
[12] Kussie PH, Gorina S, Marechal V, et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain[J]. Science, 1996, 27:948-953.
[13] Duncan SJ, Cooper MA, Williams DH. Binding of an inhibitor of the p53/MDM2 interaction to MDM2[J]. Chem Commun (Camb), 2003, 7:316-317.
[14] Li X, Zou Y, Wu MC, et al. Research progress inhibitors of peptides and peptidomimetic acting on p53-MDM2 interface[J]. J Pharm Pract (药学实践杂志), 2015, 33:494-497.
[15] Pazgier M, Liu M, Zou G, et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX[J]. Proc Natl Acad Sci U S A, 2009, 106:4665-4670.
[16] Hu B, Gilkes DM, Chen J. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX[J]. Cancer Rep, 2007, 67:8810-8817.
[17] Madden MM, Muppidi A, Li Z, et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-MDM2/MDMX interactions via photoinduced cycloaddition[J]. Bioorg Med Chem Lett, 2011, 21:1472-1475.
[18] Li C, Zhan C, Zhao L, et al. Functional consequences of retro-inverso isomerization of a miniature protein inhibitor of the p53-MDM2 interaction[J]. Bioorg Med Chem, 2013, 21:4045-4050.
[19] Chang YS, Graves B, Guerlavais V, et al. Stapled alpha-helical peptide drug development:a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy[J]. Proc Natl Acad Sci U S A, 2013, 110:3445-3454.
[20] Hu Y, Li X, Sebti SM, et al. Design and synthesis of AA peptides:a new class of peptide mimics[J]. Bioorg Med Chem Lett, 2011, 21:1469-1471.
[21] Noguchi T, Oishi S, Honda K, et al. Affinity-based screening of MDM2/MDMX-p53 interaction inhibitors by chemical array:identification of novel peptidic inhibitors[J]. Bioorg Med Chem Lett, 2013, 23:3802-3805.
[22] Duncan SJ, Gruschow S, Williams DH, et al. Isolation and structure elucidation of chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp[J]. J Am Chem Soc, 2001, 123:554-560.
[23] Liu M, Pazgier M, Li C, et al. A left-handed solution to peptide inhibition of the p53-MDM2 interaction[J]. Angew Chem, 2010, 49:3649-3652.
[24] Harker EA, Schepartz A. Cell-permeable beta-peptide inhibitors of p53/HDM2 complexation[J]. Chembiochem, 2009, 10:990-993.
[25] Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2[J]. Science, 2004; 303:844-848.
[26] Fry DC, Vassilev LT. Targeting protein-protein interactions for cancer therapy[J]. J Mol Med, 2005, 83:955-963.
[27] Hainaut P, Milner JA. A structural role for metal ions in the "wild-type" conformation of the tumor suppressor protein p53[J]. Cancer Res, 1993, 53:1739-1742.
[28] Jiang CC, Lucas K, Avery-Kiejda KA, et al. Up-regulation of Mcl-1 is critical for survival of human melanoma cells upon endoplasmic reticulum stress[J]. Cancer Res, 2008, 68:6708-6717.
[29] Zhao CY, Grinkevich V, Nikulenkov F, et al. Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA[J]. Cell Cycle, 2010, 9:1847-1855.
[30] Khoury K, Popowicz GM, Holak TA, et al. The p53-MDM2/MDMX axis:a chemotype perspective[J]. MedChemComm, 2011, 2:246-260.
[31] Vaupel A, Bold G, De Pover A, et al. Tetra-substituted imidazoles as a new class of inhibitors of the p53-MDM2 interaction[J]. Bioorg Med Chem Lett, 2014, 24:2110-2114.
[32] Grassberger BL, Lu T, Schubert C, et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells[J]. J Med Chem, 2005, 48:909-912.
[33] Raboisson P, Marugan JJ, Schubert C, et al. Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists[J]. Bioorg Med Chem Lett, 2005, 15:1857-1861.
[34] Parks DJ, Lafrance LV, Calvo RR, et al. 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction:discovery and SAR[J]. Bioorg Med Chem Lett, 2005, 15:765-770.
[35] Koblish HK, Zhao S, Franks CF, et al. Benzodiazepinedione inhibitors of the HDM2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo[J]. Mol Cancer Ther, 2006, 5:160-169.
[36] Huang Y, Wolf S, Bista M, et al. 1,4-Thienodiazepine-2,5-diones via MCR (I):synthesis, virtual space and p53-MDM2 activity[J]. Chem Biol Drug Des, 2010, 76:116-129.
[37] Allen JG, Bourbeau MP, Wohlhieter GE, et al. Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction[J]. J Med Chem, 2009, 52:7044-7053.
[38] Beck HP, DeGraffenreid M, Fox B, et al. Improvement of the synthesis and pharmacokinetic properties of chromentriazolopyrimidine MDM2-p53 protein-protein inhibitors[J]. Bioorg Med Chem Lett, 2011, 21:2752-2755.
[39] Rew Y, Sun D, Gonzalez-Lopez De Turiso F, et al. Structure-based design of novel inhibitors of the MDM2-p53 interaction[J]. J Med Chem, 2012, 55:4936-4954.
[40] Sun D, Li Z, Rew Y, et al. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development[J]. J Med Chem, 2014, 57:1454-1472.
[41] Ding K, Lu Y, Nikolovska-Coleska Z, et al. Structure-based design of potent non-peptide MDM2 inhibitors[J]. J Am Chem Soc, 2005, 127:10130-10131.
[42] Ding K, Lu Y, Nikolovska-Coleska Z, et al. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction[J]. J Med Chem, 2006, 49:3432-3435.
[43] Shangary S, Qin D, McEachern D, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition[J]. Proc Natl Acad Sci U S A, 2008, 105:3933-3938.
[44] Zhao Y, Yu S, Sun W, et al. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice[J]. J Med Chem, 2013, 56:5553-5561.
[45] Bykov V, Issaeva N, Shilov A, et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound[J]. Nat Med, 2002, 8:282-288.
[46] Ding Q, Zhang Z, Liu JJ, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development[J]. J Med Chem, 2013, 56:5979-5983.
[47] Gomez-Monterrey I, Bertamino A, Porta A, et al. Identification of the spiro(oxindole-3,3'-thiazolidine)-based derivatives as potential p53 activity modulators[J]. J Med Chem, 2010, 53:8319-8329.
[48] Liu JJ, Zhang Z. Preparation of spiroindolepyridotriazinediones as anticancer drugs:WO, 2008141975A1[P]. 2008-11-27.
[49] Ding Q, Liu JJ, Zhang Z. Spiroindolinone derivatives:WO, 2007104714A1[P]. 2007-09-20.
[50] Stoll R, Renner C, Hansen S, et al. Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53[J]. Biochemistry, 2001, 40:336-344.
[51] Pereira D, Lima RT, Palmeira A, et al. Design and synthesis of new inhibitors of p53-MDM2 interaction with a chalcone scaffold[J]. Arab J Chem, 2016:S1878535216300399.
[52] Khan SR. Boronic acid aryl analogs:US, 7829742B2[P]. 2010-11-09.
[53] Achanta G, Modzelewska A, Feng L, et al. A boronic-chalcone derivative exhibits potent anticancer activity through inhibition of the proteasome[J]. Mol Pharmacol, 2006, 70:426-433.
[54] Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM2 interaction and activates p53 function in tumors[J]. Nat Med, 2004, 10:1321-1328.
[55] Lawrence HR, Li Z, Yip ML, et al. Identification of a disruptor of the MDM2-p53 protein-protein interaction facilitated by high-throughput in silico docking[J]. Bioorg Med Chem Lett, 2009, 19:3756-3759.
[56] Ma Y, Lahue BR, Shipps Jr GW, et al. Substituted piperidines as HDM2 inhibitors[J]. Bioorg Med Chem Lett, 2014, 24:1026-1030.
[57] Ma Y, Lahue BR, Gibeau CR, et al. Pivotal role of an aliphatic side chain in the development of an HDM2 inhibitor[J]. ACS Med Chem Lett, 2014, 5:572-575.
[58] Arts J, Page M, Valckx A, et al. Small molecule inhibitors of novel targets:oral JNJ-26854165- a novel hdm2 antagonist in clinical development showing broad-spectrum preclinical antitumor activity against solid malignancies[C].San Diego,CA:AACR Annual Meeting, 2008.
[59] Lu Y, Nikolovska-Coleska Z, Fang X, et al. Discovery of a nanomolar inhibitor of the human murine double minute 2(MDM2)-p53 interaction through an integrated, virtual database screening strategy[J]. J Med Chem, 2006, 49:3759-3762.
[60] Lai Z, Yang T, Kim YB, et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors[J]. Proc Natl Acad Sci U S A, 2002, 99:14734-14739.
[61] Murray MF, Jurewicz AJ, Martin JD, et al. A high-throughput screen measuring ubiquitination of p53 by human mdm2[J]. J Biomol Screen, 2007, 12:1050-1058.
[62] Yang Y, Ludwig RL, Jensen JP, et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells[J]. Cancer Cell, 2005, 7:547-559.
[63] Kitagaki J, Agama KK, Pommier Y, et al. Targeting tumor cells expressing p53 with a water-soluble inhibitor of Hdm2[J]. Mol Cancer Ther, 2008, 7:2445-2454.
[64] Tovar C, Graves B, Packman K, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models[J]. Cancer Res, 2013, 73:2587-2597.
[65] Verreault M, Schmitt C, Glodwiet L, et al. Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2-amplified and TP53 wild-type glioblastomas[J]. Clin Cancer Res, 2016, 22:1185-1196.
[66] Canon J, Osgood T, Olson SH, et al. The MDM2 inhibitor AMG232 demonstrates robust antitumor efficacy and potentiates the activity of p53-inducing cytotoxic agents[J]. Mol Cancer Ther, 2015, 14:649-648.
[67] Rew Y, Sun D. Discovery of a small molecule MDM2 inhibitor (AMG232) for treating cancer[J]. J Med Chem, 2014, 57:6332-6341.
[68] Wang SM, Sun W, Zhao YJ, et al. SAR405838:an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression[J]. Cancer Res, 2014, 74:5855-5865.
[69] Hoffman-Luca CG, Ziazadeh D, Mceachern D, et al. Elucidation of acquired resistance to Bcl-2 and MDM2 inhibitors in acute leukemia in vitro and in vivo[J]. Clin Cancer Res, 2015, 21:2558-2568.
[70] Nakamaru K, Seki T, Tazaki K, et al. Abstract B5:preclinical characterization of a novel orally-available MDM2 inhibitor DS-3032b:anti-tumor profile and predictive biomarkers for sensitivity[J]. Mol Cancer Ther, 2015, 14:B5.
[71] Yi H, Yan X, Luo Q, et al. A novel small molecule inhibitor of MDM2-p53(APG-115) enhances radiosensitivity of gastric adenocarcinoma[J]. J Exp Clin Cancer Res, 2018, 37:97.
[72] Lakoma A, Barbieri E, Agarwal S, et al. The MDM2 small-molecule inhibitor RG7388 leads to potent tumor inhibition in p53 wild-type neuroblastoma[J]. Cell Death Discov, 2015, 1:15026.
[73] Higgins B, Glenn K, Walz A, et al. Preclinical optimization of MDM2 antagonist scheduling for cancer treatment by using a model-based approach[J]. Clin Cancer Res, 2014, 20:3742-3752.
[74] Chapeau EA, Gembarska A, Durand EY, et al. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf(-/-) mouse model[J]. Proc Natl Acad Sci U S A, 2017, 114:3151-3156.
[75] Furet P, Masuya K, Kallen J, et al. Discovery of a novel class of highly potent inhibitors of the p53-MDM2 interaction by structure-based design starting from a conformational argument[J]. Bioorg Med Chem Lett, 2016, 26:4837-4841.
[76] Kojima K, Burks JK, Arts J, et al. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias[J]. Mol Cancer Ther, 2010, 9:2545-2557.
[77] Stuhmer T, Arts J, King P, et al. A first-in-class HDM2-inhibitor (JNJ-26854165) in phase I development shows potent activity against multiple myeloma (MM) cell in vitro and ex vivo[J]. J Clin Oncol, 2008, 26S:14694.
[78] Jones RJ, Arts J, Orlowski RZ. Inhibition of the human double minute (HDM)-2 E3 ubiquitin ligase activates different programmed cell death (PCD) pathways in models of non-Hodgkin lymphoma (NHL) with wild type (wt) and mutant (mut) p53[J]. Blood, 2008, 112:3618.
[79] Wang SM, Zhao YJ, Aguilar A, et al. Targeting the MDM2-p53 protein-protein interaction for new cancer therapy:progress and challenges[J]. Cold Spring Harb Perspect Med, 2017, 7:a026245.
1.顾婧, 郭小可, 尤启冬.靶向PRC2相关蛋白小分子抑制剂的研究进展[J]. 药学学报, 2020,55(8): 1726-1734
2.周仕海, 孙朋举, 赵勇强, 张岩, 余聂芳.DOT1L抑制剂在肿瘤中的研究进展[J]. 药学学报, 2018,53(4): 500-508
3.李孝贤, 刘仁帅, 方浩.Bcl-2:从靶标到上市药物的研究进展[J]. 药学学报, 2018,53(4): 509-517
4.孟艳秋, 刘立伟, 刘冬莹, 宋艳玲.Survivin抑制剂研究进展[J]. 药学学报, 2016,51(3): 347-355