药学学报, 2021, 56(4): 1016-1024
引用本文:
孙彩霞, 鞠艳敏, 戴建君. 肿瘤微环境调节型纳米材料的研究进展[J]. 药学学报, 2021, 56(4): 1016-1024.
SUN Cai-xia, JU Yan-min, DAI Jian-jun. Research progress in tumor microenvironmentally modulating nanostructures[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 1016-1024.

肿瘤微环境调节型纳米材料的研究进展
孙彩霞1, 鞠艳敏2*, 戴建君1,2
1. 中国药科大学生命科学与技术学院, 江苏 南京 211198;
2. 中国药科大学药学院, 江苏 南京 211198
摘要:
肿瘤微环境(tumor microenvironment,TME)是由免疫细胞、炎症细胞、肿瘤相关成纤维细胞、微血管,以及各种细胞因子和趋化因子所构成的一个复杂的综合系统,作为肿瘤细胞的生存环境,它与肿瘤的发生、转移及复发密切相关。肿瘤微环境的特点包括:弱酸性环境、低氧、活性氧(reactive oxygen species,ROS)及还原性物质含量高、免疫抑制性等。弱酸性环境有利于肿瘤细胞的转移;低氧有利于耐药性的出现;ROS及还原性物质含量高有利于肿瘤的治疗;免疫抑制性有利于免疫逃逸的发生。随着纳米技术的不断发展,越来越多的纳米材料被报道可通过调节肿瘤微环境进而实现肿瘤治疗。本文主要综述了纳米材料在调节肿瘤微环境中的酸碱度(hydrogen-ion concentration,pH)、氧气(oxygen,O2)含量、ROS浓度及免疫细胞活性方面的最新研究进展,并对未来的研究方向做出了展望。
关键词:    纳米材料      肿瘤微环境      酸碱度      氧气      活性氧      免疫抑制     
Research progress in tumor microenvironmentally modulating nanostructures
SUN Cai-xia1, JU Yan-min2*, DAI Jian-jun1,2
1. School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China;
2. School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
Abstract:
Tumor microenvironment (TME) is a complex comprehensive system composed of immune cells, inflammatory cells, tumor-associated fibroblasts, microvessels, and various cytokines and chemokines. As the living environment of tumor cells, it's closely related to the occurrence, metastasis, and recurrence of tumors. The characteristics of tumor microenvironment include:weakly acidic environment, low oxygen, high concentration of reactive oxygen species (ROS) and reducing substances, immunosuppression, etc. A weakly acidic environment favors metastasis of tumor cells, hypoxia is conducive to the emergence of drug resistance, high concentration of ROS and reducing substances are beneficial for tumor treatment, and immunosuppressiveness facilitates immune escape. With the rapid development of nanotechnology, more and more nanostructures have been reported to achieve tumor treatment by regulating the tumor microenvironment. This review summarizes recent advances in the nanostructures used to regulate tumor microenvironment through changing elements, including hydrogen-ion concentration (pH), the concentration of oxygen (O2) and reactive oxygen species, and the activity of immune cells. Moreover, research directions in the future are pointed out in this review.
Key words:    nanostructure    tumor microenvironment    hydrogen-ion concentration    oxygen    reactive oxygen species    immunosuppression   
收稿日期: 2020-09-30
DOI: 10.16438/j.0513-4870.2020-1572
基金项目: 国家重点研发资助项目(2019YFC1605402);国家自然科学基金青年科学基金资助项目(52002402);江苏省优势学科颠覆性计划.
通讯作者: 鞠艳敏,Tel:86-25-86185360,E-mail:juyanmin@cpu.edu.cn
Email: juyanmin@cpu.edu.cn
相关功能
PDF(1420KB) Free
打印本文
0
作者相关文章
孙彩霞  在本刊中的所有文章
鞠艳敏  在本刊中的所有文章
戴建君  在本刊中的所有文章

参考文献:
[1] Liu R, Hu C, Yang YY, et al. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment[J]. Acta Pharm Sin (药学学报), 2019, 54:410-420.
[2] Wu X, Hu W, Lu L, et al. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment[J]. Acta Pharm Sin (药学学报), 2019, 54:203-219.
[3] Zhang JY, Shi ZP, Xu X, et al. The influence of microenvironment on tumor immunotherapy[J]. FEBS J, 2019, 286:4160-4175.
[4] Chen C, Bai LP, Cao FQ, et al. Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis[J]. Oncogene, 2019, 38:4527-4539.
[5] Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells[J]. Blood, 2007, 109:3812-3819.
[6] Liu JN, Bu WB, Shi JL. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia[J]. Chem Rev, 2017, 117:6160-6224.
[7] Schoning JP, Monteiro M, Gu WY. Drug resistance and cancer stem cells:the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α[J]. Clin Exp Pharmacol Physiol, 2017, 44:153-161.
[8] Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment[J]. Int J Nanomed, 2018, 13:6049-6058.
[9] Luo C, Sun J, Liu D, et al. Self-assembled redox dual-responsive prodrug-nanosystem formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy[J]. Nano Lett, 2016, 16:5401-5408.
[10] Principe DR, Doll JA, Bauer J, et al. TGF-β:duality of function between tumor prevention and carcinogenesis[J]. J Natl Cancer Inst, 2014, 106:djt369.
[11] Younos IH, Abe F, Talmadge JE. Myeloid-derived suppressor cells:their role in the pathophysiology of hematologic malignancies and potential as therapeutic targets[J]. Leuk Lymphoma, 2015, 56:2251-2263.
[12] Kovaleva OV, Samoilova DV, Shitova MS, et al. Tumor associated macrophages in kidney cancer[J]. Anal Cell Pathol, 2016, 2016:9307549.
[13] Quader S, Kataoka K. Nanomaterial-enabled cancer therapy[J]. Mol Ther, 2017, 25:1501-1513.
[14] Heiden M, Cantley LC, Thompson CB. Understanding the warburg effect:the metabolic requirements of cell proliferation[J]. Science, 2009, 324:1029-1033.
[15] Som A, Raliya R, Tian LM, et al. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo[J]. Nanoscale, 2016, 8:12639-12647.
[16] Prasad P, Gordijo CR, Abbasi AZ, et al. Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response[J]. ACS Nano, 2014, 8:3202-3212.
[17] Calcinotto A, Filipazzi P, Grioni M, et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes[J]. Cancer Res, 2012, 72:2746-2756.
[18] Zhang YX, Zhao YY, Shen JZ, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy[J]. Nano Lett, 2019, 19:2774-2783.
[19] Zeng W, Liu PY, Pan WM, et al. Hypoxia and hypoxia inducible factors in tumor metabolism[J]. Cancer Lett, 2015, 356:263-267.
[20] Zou MZ, Liu WL, Gao F, et al. Artificial natural killer cells for specific tumor inhibition and renegade macrophage re-education[J]. Adv Mater, 2019, 31:e1904495.
[21] Gu TX, Cheng L, Gong F, et al. Upconversion composite nanoparticles for tumor hypoxia modulation and enhanced near-infrared-triggered photodynamic therapy[J]. ACS Appl Mater Interfaces, 2018, 10:15494-15503.
[22] Chen HC, Tian JW, He WJ, et al. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells[J]. J Am Chem Soc, 2015, 137:1539-1547.
[23] Ma HY, Wang CQ, He H, et al. Ethyl acetate extract of Caesalpinia sappan L. inhibited acute myeloid leukemia via ROS-mediated apoptosis and differentiation[J]. Phytomedicine, 2020, 68:153142.
[24] Vighetto V, Ancona A, Racca L, et al. The synergistic effect of nanocrystals combined with ultrasound in the generation of reactive oxygen species for biomedical applications[J]. Front Bioeng Biotechnol, 2019, 7:374.
[25] Guan Y, Lu HG, Li W, et al. Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy[J]. ACS Appl Mater Interfaces, 2017, 9:26731-26739.
[26] Xu C, Nam J, Hong H, et al. Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy[J]. ACS Nano, 2019, 13:12148-12161.
[27] Kim YJ, Lee HI, Kim JK, et al. Peptide 18-4/chlorin e6-conjugated polyhedral oligomericsil sesquioxane nanoparticles for targeted photodynamic therapy of breast cancer[J]. Colloids Surf B Biointerfaces, 2020, 189:110829.
[28] Tang ZM, Liu YY, He MY, et al. Chemodynamic therapy:tumour microenvironment-mediated fenton and fenton-like reactions[J]. Angew ChemInt Ed Engl, 2019, 58:946-956.
[29] Dong SM, Xu JT, Jia T, et al. Upconversion-mediated ZnFe2O4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy[J]. Chem Sci, 2019, 10:4259-4271.
[30] Liu YL, Ji XY, Tong WWL, et al. Engineering multifunctional RNAi nanomedicine to concurrently target cancer hallmarks for combinatorial therapy[J]. Angew ChemInt Ed Engl, 2018, 57:1510-1513.
[31] Hu H, Chen JT, Yang H, et al. Potentiating photodynamic therapy of ICG-loaded nanoparticles by depleting GSH with PEITC[J]. Nanoscale, 2019, 11:6384-6393.
[32] Lin LS, Song JB, Song L, et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent enhances chemodynamic therapy[J]. Angew Chem Int Ed Engl, 2018, 57:4902-4906.
[33] Ramesh A, Natarajan SK, Nandi D, et al. Dual inhibitors-loaded nanotherapeutics that target kinase signaling pathways synergize with immune checkpoint inhibitor[J]. Cell Mol Bioeng, 2019, 12:357-373.
[34] Zhao MX, Guo WJ, Wu YY, et al. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade[J]. Acta Pharm Sin (药学学报), 2019, 9:304-315.
[35] Sun C, Mezzadra R, Schumacher TN. Regulation and function of the PD-L1 checkpoint[J]. Immunity, 2018, 48:434-452.
[36] Zhang ZZ, Wang QX, Liu Q, et al. Dual-locking nanoparticles disrupt the PD-1/PD-L1 pathway for efficient cancer immunotherapy[J]. Adv Mater, 2019, 31:e1905751.
[37] Huang LP, Li YN, Du YN, et al. Mild photothermal therapy potentiates anti-PD-L1 treatment for immunologically cold tumors via an all-in-one and all-in-control strategy[J]. Nat Commun, 2019, 10:4871.
[38] Wang DG, Wang TT, Yu HJ, et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment[J]. Sci Immunol, 2019, 4:eaau6584.
[39] Gionfriddo G, Plastina P, Augimeri G, et al. Modulating tumor-associated macrophage polarization by synthetic and natural PPARγ ligands as a potential target in breast cancer[J]. Cells, 2020, 9:174.
[40] Park SH. Ethyl acetate fraction of Adenophora triphylla var. japonica inhibits migration of lewis lung carcinoma cells by suppressing macrophage polarization toward an M2 phenotype[J]. J Pharmacopuncture, 2019, 22:253-259.
[41] Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology[J]. Nat Rev Clin Oncol, 2017, 14:399-416.
[42] Kelly B, O'Neill LAJ. Metabolic reprogramming in macrophages and dendritic cells in innate immunity[J]. Cell Res, 2015, 25:771-784.
[43] Xu C, Yang S, Jiang ZJ, et al. Self-propelled gemini-like LMWH-scaffold nanodrugs for overall tumor microenvironment manipulation via macrophage reprogramming and vessel normalization[J]. Nano Lett, 2020, 20:372-383.
[44] Zang XL, Zhang XX, Zhao XL, et al. Targeted delivery of miRNA 155 to tumor associated macrophages for tumor immunotherapy[J]. Mol Pharm, 2019, 16:1714-1722.
[45] Tian LL, Yi X, Dong ZL, et al. Calcium bisphosphonate nanoparticles with chelator-free radiolabeling to deplete tumor-associated macrophages for enhanced cancer radioisotope therapy[J]. ACS Nano, 2018, 12:11541-11551.
[46] Luo ZJ, Dai Y, Gao HL. Development and application of hyaluronic acid in tumor targeting drug delivery[J]. Acta Pharm Sin (药学学报), 2019, 54:1099-1112.
[47] Long Y, Lu Z, Xu S, et al. Self-delivery micellar nanoparticles prevent premetastatic niche formation by interfering with the early recruitment and vascular destruction of granulocytic myeloid-derived suppressor cells[J]. Nano Lett, 2019, 20:2219-2229.
[48] Plebanek MP, Bhaumik D, Bryce PJ, et al. Scavenger receptor type B1 and lipoprotein nanoparticle inhibit myeloid-derived suppressor cells[J]. Mol Cancer Ther, 2018, 17:686-697.
[49] Xu ZH, Ramishetti S, Tseng YC, et al. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis[J]. J Control Release, 2013, 172:259-265.
[50] Steinman RM. Dendritic cells:versatile controllers of the immune system[J]. Nat Med, 2007, 13:1155-1159.
[51] Ostrand-Rosenberg S, Sinha P, Beury DW, et al. Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression[J]. Semin Cancer Biol, 2012, 22:275-281.
[52] Chang HC, Zou ZZ, Wang QH, et al. Targeting and specific activation of antigen-presenting cells by endogenous antigen-loaded nanoparticles elicits tumor-specific immunity[J]. Adv Sci, 2019, 7:1900069.
[53] Liu Y, Crowe WN, Wang LL, et al. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases[J]. Nat Commun, 2019, 10:5108.
相关文献:
1.陈风飞, 李欣欣, 孙立, 马晓慧, 袁胜涛.肿瘤微环境及相关靶向药的研究进展[J]. 药学学报, 2018,53(5): 676-683