药学学报, 2021, 56(4): 1025-1034
赖晓雪, 王硕, 闫鑫杨, 刘欣荣, 宋艳志, 邓意辉*. 基于血小板的肿瘤靶向治疗策略与反思[J]. 药学学报, 2021, 56(4): 1025-1034.
LAI Xiao-xue, WANG Shuo, YAN Xin-yang, LIU Xin-rong, SONG Yan-zhi, DENG Yi-hui*. Strategies and reflections on platelet-based targeted therapy for tumor[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 1025-1034.

赖晓雪, 王硕, 闫鑫杨, 刘欣荣, 宋艳志, 邓意辉*
沈阳药科大学药学院, 辽宁 沈阳 110016
在过去的几十年里,对血小板的认识有了长足的进步,血小板在癌症中发挥着意想不到的中心作用,极大地影响癌细胞的行为,同时血小板的生理和表型也受到癌细胞的影响。因此,基于血小板的肿瘤靶向治疗策略引起了研究者们的注意,但该策略应用的限制因素需要研究者们更多关注。本文对基于血小板的肿瘤靶向治疗策略进行了总结,关注了血小板易活化、不易存储和未知的功能与表型变化等问题对血小板相关药物递送系统(drug delivery systems,DDS)的影响,同时,从理论基础、DDS构建的安全性和稳定性以及血小板相关DDS的体内命运等方面综合地反思了基于血小板的肿瘤靶向治疗策略,并探讨了血小板在肿瘤诊断和治疗领域的发展潜力,将为血小板相关的肿瘤诊断和靶向治疗研究提供一定的理论参考。
关键词:    血小板      肿瘤      药物递送系统      分子靶向治疗      血小板活化      癌症的早期发现     
Strategies and reflections on platelet-based targeted therapy for tumor
LAI Xiao-xue, WANG Shuo, YAN Xin-yang, LIU Xin-rong, SONG Yan-zhi, DENG Yi-hui*
School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
In the past few decades, our understanding of platelets has made great progress. Platelets play an unexpected central role in cancer and greatly affect the behavior of cancer cells. At the same time, the physiology and phenotype of platelets are also affected by cancer cells. Therefore, platelet-based tumor targeted therapy strategies have attracted the attention of researchers, but the limitations of their application require more attention. In this paper, the strategies of platelet-based tumor targeted therapy are summarized, and the strategies of platelet mimicking nanocarrier delivery, platelet hitch riding, platelet membrane coating biomimetic and engineered platelet targeting are mainly introduced. The easy activation, hard storage and unknown functional and phenotypic changes of platelets were discussed. At the same time, the strategy of platelet-based targeted tumor therapy is reviewed from theoretical basis and practical application. The development potential of platelets in the field of tumor diagnosis and treatment is discussed, which will provide some theoretical reference for the study of platelet-related tumor diagnosis and targeted therapy.
Key words:    platelet    neoplasm    drug delivery system    molecular targeted therapy    platelet activation    early detection of cancer   
收稿日期: 2020-12-11
DOI: 10.16438/j.0513-4870.2020-1903
通讯作者: 邓意辉,Tel:86-24-43520552,E-mail:dds-666@163.com
Email: dds-666@163.com
PDF(1032KB) Free
赖晓雪  在本刊中的所有文章
王硕  在本刊中的所有文章
闫鑫杨  在本刊中的所有文章
刘欣荣  在本刊中的所有文章
宋艳志  在本刊中的所有文章
邓意辉*  在本刊中的所有文章

[1] Li N. Platelets in cancer metastasis:to help the "villain" to do evil[J]. Int J Cancer, 2016, 138:2078-2087.
[2] Walsh TG, Metharom P, Berndt MC, et al. Berndt, the functional role of platelets in the regulation of angiogenesis[J]. Platelets, 2015, 26:199-211.
[3] Yap ML, Mcfadyen JD, Wang X, et al. Targeting activated platelets:a unique and potentially universal approach for cancer imaging[J]. Theranostics, 2017, 7:2565-2574.
[4] Nakeff A, Maat B. Separation of megakaryocytes from mouse bone marrow by velocity sedimentation[J]. Blood, 1974, 43:591-595.
[5] Day RB, Link DC. Megakaryocytes in the hematopoietic stem cell niche[J]. Nat Med, 2014, 20:1233-1234.
[6] Lefranais E, Ortiz-Muoz G, Caudrillier A, et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors[J]. Nature, 2017, 544:105-109.
[7] Richardson JL, Shivdasani RA, Boers C, et al. Mechanisms of organelle transport and capture along proplatelets during platelet production[J]. Blood, 2005, 106:4066-4075.
[8] Machlus KR, Italiano JE Jr. The incredible journey:from megakaryocyte development to platelet formation[J]. J Cell Biol, 2013, 201:785-796.
[9] Du Y, Chen B. Combination of drugs and carriers in drug delivery technology and its development[J]. Drug Des Devel Ther, 2019, 13:1401-1408.
[10] Ponomareva AA, Nevzorova TA, Mordakhanova ER, et al. Structural characterization of platelets and platelet-derived microvesicles[J]. Tsitologiia, 2016, 58:105-114.
[11] Holinstat M. Normal platelet function[J]. Cancer Metast Rev, 2017, 36:195-198.
[12] Gremmel T, Frelinger AL, Michelson AD. Platelet physiology[J]. Semin Thromb Hemost, 2016, 42:191-204.
[13] Kamath S, Blann AD, Lip GYH. Platelet activation:assessment and quantification[J]. Eur Heart J, 2001, 22:1561-1571.
[14] Fiorini E, Veghini L, Corbo V. Modeling cell communication in cancer with organoids:making the complex simple[J]. Front Cell Dev Biol, 2020, 8:166-173.
[15] Gaertner F, Massberg S. Patrolling the vascular borders:platelets in immunity to infection and cancer[J]. Nat Rev Immunol, 2019, 19:1-14.
[16] Haemmerle M, Stone RL, Menter DG, et al. The platelet lifeline to cancer:challenges and opportunities[J]. Cancer Cell, 2018, 33:965-983.
[17] Palacios-Acedo AL, Mège D, Crescence L, et al. Platelets, thrombo-inflammation and cancer:collaborating with the enemy[J]. Front Immunol, 2019, 10:1805-1809.
[18] Li R, Ren M, Chen N, et al. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis[J]. BMC cancer, 2014, 14:167-174.
[19] Ortiz-Otero N, Mohamed Z, King MR. Platelet-based drug delivery for cancer applications[J]. Adv Exp Med Biol, 2018, 10:235-251.
[20] Jain S, Harris JP, Ware J, et al. Platelets:linking hemostasis and cancer[J]. Arterioscler Thromb Vasc Biol, 2010, 30:2362-2367.
[21] Liebman HA. Thrombocytopenia in cancer patients[J]. Thromb Res, 2014, 133:63-69.
[22] Asghar S, Parvaiz F, Manzoor S. Multifaceted role of cancer educated platelets in survival of cancer cells[J]. Thromb Res, 2019, 177:42-50.
[23] Steinbichler TB, Dudás J, Riechelmann H, et al. The role of exosomes in cancer metastasis[J]. Semin Cancer Biol, 2017, 44:170-181.
[24] Foss A, Muñoz-Sagredo L, Sleeman J, et al. The contribution of platelets to intravascular arrest, extravasation, and outgrowth of disseminated tumor cells[J]. Clin Exp Metast, 2020, 37:47-67.
[25] De la Garza Ramos R,Goodwin CR, Jain A, et al. Development of a metastatic spinal tumor frailty index (MSTFI) using a nationwide database and its association with inpatient morbidity, mortality and length of stay after spine surgery[J]. World Neurosurg, 2016, 95:548-555.
[26] Modery-Pawlowski CL, Master AM, Pan V, et al. A platelet-mimetic paradigm for metastasis-targeted nanomedicine platforms[J]. Biomacromolecules, 2013, 14:910-919.
[27] Pan V, Siva PN, Modery-Pawlowski CL, et al. Targeted killing of metastatic cells using a platelet-inspired drug delivery system[J]. RSC Adv, 2015, 5:46218-46228.
[28] Nandi S, Brown AC. Platelet-mimetic strategies for modulating the wound environment and inflammatory responses[J]. Exp Biol Med, 2016, 241:1138-1148.
[29] Wilhelm S, Tavares AJ, Dai Q, et al. Analysis of nanoparticle delivery to tumours[J]. Nat Rev Mater, 2016, 1:1-12.
[30] Li T, Dong H, Zhang C, et al. Cell-based drug delivery systems for biomedical applications[J]. Nano Res, 2018, 11:5240-5257.
[31] Sun Y, Su J, Liu G, et al. Advances of blood cell-based drug delivery systems[J]. Eur J Pharm Sci, 2017, 96:115-128.
[32] Liu L, You Y, Liao FR. On shear-induced platelet aggregation and its therapy[J]. Acta Pharm Sin (药学学报), 2020, 55:2501-2509.
[33] Lu Y, Hu Q, Jiang C, et al. Platelet for drug delivery[J]. Curr Opin Biotechnol, 2019, 58:81-91.
[34] Chen X, Wang Q, Liu L, et al. Double-sided effect of tumor microenvironment on platelets targeting nanoparticles[J]. Biomaterials, 2018, 183:258-267.
[35] Zhang Y, Zhu X, Chen X, et al. Activated platelets-targeting micelles with controlled drug release for effective treatment of primary and metastatic triple negative breast cancer[J]. Adv Funct Mater, 2019, 29:1806620.
[36] Hu Q, Sun W, Qian C, et al. Anticancer platelet-mimicking nanovehicles[J]. Adv Mater, 2015, 27:7043-7050.
[37] Hu Q, Qian C, Sun W, et al. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus[J]. Adv Mater, 2016, 28:9573-9580.
[38] Mei D, Gong L, Zou Y, et al. Platelet membrane-cloaked paclitaxel-nanocrystals augment postoperative chemotherapeutical efficacy[J]. J Control Release, 2020, 324:341-353.
[39] Kim MW, Lee G, Niidome T, et al. Platelet-like gold nanostars for cancer therapy:the ability to treat cancer and evade immune reactions[J]. Front Bioeng Biotechnol, 2020, 8:133-141.
[40] Ye H, Wang K, Lu Q, et al. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition[J]. Biomaterials, 2020, 242:119932.
[41] Mai X, Zhang Y, Fan H, et al. Integration of immunogenic activation and immunosuppressive reversion using mitochondrial-respiration-inhibited platelet-mimicking nanoparticles[J]. Biomaterials, 2020, 232:119699.
[42] Wu L, Xie W, Zan HM, et al. Platelet membrane-coated nanoparticles for targeted drug delivery and local chemo-photothermal therapy of orthotopic hepatocellular carcinoma[J]. J Mater Chem B, 2020, 8:4648-4659.
[43] Wang H, Wu J, Williams GR, et al. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery[J]. J Nanobiotechnology, 2019, 17:60.
[44] Chen Y, Zhao G, Wang S, et al. Platelet-membrane-camouflaged bismuth sulfide nanorods for synergistic radio-photothermal therapy against cancer[J]. Biomater Sci, 2019, 7:3450-3459.
[45] Ye H, Wang K, Wang M, et al. Bioinspired nanoplatelets for chemo-photothermal therapy of breast cancer metastasis inhibition[J]. Biomaterials, 2019, 206:1-12.
[46] Zhang M, Ye J, Xia Y, et al. Platelet-mimicking biotaxis targeting vasculature-disrupted tumors for cascade amplification of hypoxia-sensitive therapy[J]. ACS Nano, 2019, 13:14230-14240.
[47] Jiang Q, Wang K, Zhang X, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy[J]. Small, 2020, 16:2001704.
[48] Xu L, Gao F, Fan F, et al. Platelet membrane coating coupled with solar irradiation endows a photodynamic nanosystem with both improved antitumor efficacy and undetectable skin damage[J]. Biomaterials, 2018, 159:59-67.
[49] Jing L, Qu H, Wu D, et al. Platelet-camouflaged nanococktail:simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy[J]. Theranostics, 2018, 8:2683-2695.
[50] Bang KH, Na YG, Huh HW, et al. The delivery strategy of paclitaxel nanostructured lipid carrier coated with platelet membrane[J]. Cancers, 2019, 11:807-906.
[51] Zhuang J, Gong H, Zhou J, et al. Targeted gene silencing in vivo by platelet membrane-coated metal-organic framework nanoparticles[J]. Sci Adv, 2020, 6:6108-6113.
[52] Shang Y, Wang Q, Li J, et al. Platelet-membrane-camouflaged zirconia nanoparticles inhibit the invasion and metastasis of HeLa cells[J]. Front Chem, 2020, 8:377-382.
[53] Shang Y, Wang Q, Wu B, et al. Platelet membrane camouflaged black phosphorus quantum dots enhance anticancer effect mediated by apoptosis and autophagy[J]. ACS Appl Mater Interfaces, 2019, 11:28254-28266.
[54] Liu G, Zhao X, Zhang Y, et al. Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity[J]. Adv Mater, 2019, 31:1900795.
[55] Xu L, Su T, Xu X, et al. Platelets membrane camouflaged irinotecan-loaded gelatin nanogels for in vivo colorectal carcinoma therapy[J]. J Drug Deliv Sci Technol, 2019, 53:101190.
[56] Pokrovskaya ID, Tobin MP, Desai R, et al. Canalicular system reorganization during mouse platelet activation as revealed by 3D ultrastructural analysis[J]. Platelets, 2021, 32:97-104.
[57] Selvadurai MV, Hamilton JR. Structure and function of the open canalicular system-the platelet's specialized internal membrane network[J]. Platelets, 2018, 29:319-325.
[58] Marriott G. Engineering platelets for tumour targeting[J]. Aging, 2016, 8:1572-1573.
[59] Rao L, Bu L, Ma L, et al. Platelet-facilitated photothermal therapy of head and neck squamous cell carcinoma[J]. Angew Chem Int Ed Engl, 2018, 57:986-991.
[60] Wu YW, Huang CC, Changou CA, et al. Clinical-grade cryopreserved doxorubicin-loaded platelets:role of cancer cells and platelet extracellular vesicles activation loop[J]. J Biomed Sci, 2020, 27:45-57.
[61] Wang X, Liang G, Hao X, et al. Bioinspired drug delivery carrier for enhanced tumor-targeting in melanoma mice model[J]. J Biomed Nanotechnol, 2019, 15:1482-1491.
[62] Xu P, Zuo H, Chen B, et al. Doxorubicin-loaded platelets as a smart drug delivery system:an improved therapy for lymphoma[J]. Sci Rep, 2017, 7:42632.
[63] Xu P, Zuo H, Zhou R, et al. Doxorubicin-loaded platelets conjugated with anti-CD22 mAbs:a novel targeted delivery system for lymphoma treatment with cardiopulmonary avoidance[J]. Oncotarget, 2017, 8:58322-58337.
[64] Sarkar S, Alam MA, Shaw J, et al. Drug delivery using platelet cancer cell interaction[J]. Pharm Res, 2013, 30:2785-2794.
[65] Chi C, Li F, Liu H, et al. Docetaxel-loaded biomimetic nanoparticles for targeted lung cancer therapy in vivo[J]. J Nanopart Res, 2019, 21:144-154.
[66] Wang C, Sun W, Ye Y, et al. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy[J]. Nat Biomed Eng, 2017, 1:1-10.
[67] Han X, Chen J, Chu J, et al. Platelets as platforms for inhibition of tumor recurrence post-physical therapy by delivery of anti-PD-L1 checkpoint antibody[J]. J Control Release, 2019, 304:233-241.
[68] Zhang X, Wang J, Chen Z, et al. Engineering PD-1-presenting platelets for cancer immunotherapy[J]. Nano Lett, 2018, 18:5716-5725.
[69] Schwarz S, Gockel LM, Naggi A, et al. Glycosaminoglycans as tools to decipher the platelet tumor cell interaction:a focus on P-selectin[J]. Molecules, 2020, 25:1039-1049.
[70] Zara M, Canobbio I, Visconte C, et al. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells[J]. Cell Signal, 2018, 48:45-53.
[71] Page MJ, Thomson GJ, Nunes JM, et al. Serum amyloid A binds to fibrin (ogen), promoting fibrin amyloid formation[J]. Sci Rep, 2019, 9:3102-3111.
[72] Pretorius L, Thomson GJA, Adams RCM, et al. Platelet activity and hypercoagulation in type 2 diabetes[J]. Cardiovasc Diabetol, 2018, 17:1-11.
[73] Grill A, Kiouptsi K, Karwot C, et al. Evaluation of blood collection methods and anticoagulants for platelet function analyses on C57BL/6J laboratory mice[J]. Platelets, 2020, 31:981-988.
[74] Ng MSY, Tung JP, Fraser JF. Platelet storage lesions:what more do we know now[J]. Transfus Med Rev, 2018, 32:144-154.
[75] Castrillo A, Cardoso M, Rouse L, et al. Treatment of buffy coat platelets in platelet additive solution with the mirasol pathogen reduction technology system[J]. Transfus Med Hemother, 2013, 40:44-48.
[76] Nurhayati RW, Ojima Y, Taya M, et al. Recent developments in ex vivo platelet production[J]. Cytotechnology, 2016, 68:2211-2221.
[77] Pennell EN, Wagner K, Mosawy S, et al. Acute bilirubin ditaurate exposure attenuates ex vivo platelet reactive oxygen species production, granule exocytosis and activation[J]. Redox Biol, 2019, 26:101250.
[78] Hosseini E, Ghasemzadeh M, Azizvakili E, et al. Platelet spreading on fibrinogen matrix, a reliable and sensitive marker of platelet functional activity during storage[J]. J Thromb Thrombolys, 2019, 48:430-438.
[79] Amelirad A, Shamsasenjan K, Akbarzadehlaleh P, et al. Signaling pathways of receptors involved in platelet activation and shedding of these receptors in stored platelets[J]. Adv Pharm Bull, 2019, 9:38-47.
[80] van der Meijden PEJ, Heemskerk JWM. Platelet biology and functions:new concepts and clinical perspectives[J]. Nat Rev Cardiol, 2019, 16:166-179.
[81] Gitz E, Koekman CA, Den Heuvel DJ, et al. Improved platelet survival after cold storage by prevention of glycoprotein Ibα clustering in lipid rafts[J]. Haematologica, 2012, 97:1873-1881.
[82] Swieringa F, Spronk HMH, Heemskerk JWM, et al. Integrating platelet and coagulation activation in fibrin clot formation[J]. Res Pract Thromb Haemost, 2018, 2:456-460.
[83] Sharma D, Brummel-Ziedins KE, Bouchard BA, et al. Platelets in tumor progression:a host factor that offers multiple potential targets in the treatment of cancer[J]. J Cell Physiol, 2014, 229:1005-1015.
[84] Xu XR, Yousef GM, Ni H. Cancer and platelet crosstalk:opportunities and challenges for aspirin and other antiplatelet agents[J]. Blood, 2018, 131:1777-1789.
[85] Holmes CE, Levis JE, Schneider DJ, et al. Platelet phenotype changes associated with breast cancer and its treatment[J]. Platelets, 2016, 27:703-711.
[86] In't Veld SGJG,Wurdinger T. Tumor-educated platelets[J]. Blood, 2019, 133:2359-2364.
[87] Tsong TY. Electroporation of cell membranes[J]. Biophys J, 1991, 60:297-306.
[88] Thanuja MY, Anupama C, Ranganath SH, et al. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery:so near and yet so far[J]. Adv Drug Deliv Rev, 2018, 132:57-80.
[89] Bottsfordmiller J, Choi HJ, Dalton HJ, et al. Differential platelet levels affect response to taxane-based therapy in ovarian cancer[J]. Clin Cancer Res, 2015, 21:602-610.
[90] Josefsson EC, Hartwig JH, Hoffmeister KM, et al. Platelet storage temperature-how low can we go[J]. Transfus Med Hemother, 2007, 34:253-261.
[91] Fan Z, Zhou H, Li PY, et al. Structural elucidation of cell membrane-derived nanoparticles using molecular probes[J]. J Mater Chem B, 2014, 2:8231-8238.
[92] Li Z, Hu S, Cheng K, et al. Platelets and their biomimetics for regenerative medicine and cancer therapies[J]. J Mater Chem B, 2018, 6:7354-7365.
[93] Eriksson O, Mohlin C, Nilsson B, et al. The human platelet as an innate immune cell:interactions between activated platelets and the complement system[J]. Front Immunol, 2019, 10:1590-1598.
[94] Moghimi SM, Hunter AC, Peer D, et al. Platelet mimicry:the emperor's new clothes[J]. Nanomedicine, 2016, 12:245-248.
[95] Barrionuevo N, Gatica S, Olivares P, et al. Endothelial cells exhibit two waves of P-selectin surface aggregation under endotoxic and oxidative conditions[J]. Protein J, 2019, 38:667-674.
[96] Yuan L, Sun Y, Huang G. Using class-specific feature selection for cancer detection with gene expression profile data of platelets[J]. Sensors, 2020, 20:1528-1537.
1.李珊, 陈子豪, 吕明, 朱彦.靶向血小板与肿瘤细胞相互作用药物的现状和未来[J]. 药学学报, 2021,56(2): 360-367
2.张佳, 赵婷, 敦洁宁, 孙明贤, 黄荣荣, 向柏, 白靖, 曹德英.门控型药物递送系统研究进展[J]. 药学学报, 2019,54(6): 1017-1025
3.李梦茹, 李腾, 莫然.胰腺癌靶向纳米递药系统的研究进展[J]. 药学学报, 2018,53(7): 1090-1099
4.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报, 2017,52(7): 1110-1116
5.张美, 李光伟.纤维连接蛋白B结构域的生物学特征及其靶向药物开发[J]. 药学学报, 2017,52(8): 1216-1221
6.马银云, 李莉, 黄海凤, 缑三虎, 倪京满.肿瘤靶向型pH敏感多肽类药物递送系统研究进展[J]. 药学学报, 2016,51(5): 717-724
7.胡宏祥, 王学清, 张华, 张强.分子靶向抗肿瘤药物的作用机制及临床研究进展[J]. 药学学报, 2015,50(10): 1232-1239
8.毛昱嘉;王霖;王文杰.银杏内酯B对oxLDL刺激大鼠胸主动脉平滑肌细胞和U937细胞功能变化的作用[J]. 药学学报, 2006,41(1): 36-40
9.臧宝霞;金鸣;吴伟;陈文梅;朴永哲;李金荣.杨梅素对血小板活化因子拮抗的作用[J]. 药学学报, 2003,38(11): 831-833
10.聂珍贵;王文杰.银杏内酯B对血小板活化因子刺激的大鼠中性粒细胞功能的影响银杏内酯B对血小板活化因子刺激的大鼠中性粒细胞功能的影响[J]. 药学学报, 2003,38(2): 98-102
11.臧宝霞;金鸣;司南;张彦;吴伟;朴永哲.羟基红花黄色素A对血小板活化因子的拮抗作用[J]. 药学学报, 2002,37(9): 696-699
12.周龙恩;王文杰;白金叶;程桂芳.银杏内酯B对大鼠中性白细胞花生四烯酸代谢酶和细胞内钙水平的影响[J]. 药学学报, 2001,36(2): 92-95
13.吕扬;郑启泰;张亮仁;卢景芬;马玉良;韩桂秋.木脂素类化合物的精细立体结构与生物活性关系[J]. 药学学报, 1996,31(9): 684-688
14.马迎;韩桂秋;刘志坚.海风藤中新木脂素类PAF拮抗活性成分的研究[J]. 药学学报, 1993,28(3): 207-211
15.鞠佃文;郑钦岳;王洪斌;王晓峰;方军.血小板激活因子拮抗剂WEB2086对小鼠腹腔巨噬细胞释放肿瘤坏死因子的影响(英文)[J]. 药学学报, 1993,28(10): 721-727
16.曾国钱;鞠佃文;孙笃新;黄彤舸;芮耀诚.蝙蝠葛碱和粉防己碱对[3H]WEB 2086与体外牛脑前动脉平滑肌细胞结合的影响(英文)[J]. 药学学报, 1993,28(7): 499-503
17.陈泽乃;徐佩娟.海风藤中巴豆环氧素的衍生物研究[J]. 药学学报, 1993,28(11): 876-880
18.马迎;韩桂秋;王银叶.海风藤中有PAF拮抗活性的苯骈呋喃类新木脂素[J]. 药学学报, 1993,28(5): 370-373
19.程能能;杉浦隆之;福田辉夫;和久敬藏.地龙(蚯蚓)体内磷脂的组成和血小板活化因子的生物合成[J]. 药学学报, 1992,27(12): 886-890
20.方军;郑钦岳.商陆皂甙甲抑制大鼠腹腔巨噬细胞释放血小板活化因子[J]. 药学学报, 1991,26(10): 721-724
21.马迎;韩桂秋;李长龄;诚静容;BHArison;SBHwang.樟叶胡椒中新木脂素成分的研究[J]. 药学学报, 1991,26(5): 345-350
22.韩桂秋;魏丽华;李长龄;乔梁;贾玉珍;郑启泰.石南藤、山蒟活性成分的分离和结构鉴定[J]. 药学学报, 1989,24(6): 438-443
23.韩桂秋;MichaelN.Chang;San-BaoHwang.红藤木质素的研究[J]. 药学学报, 1986,21(1): 68-70
24.韩桂秋;李书明;李长龄;JPSpringer;SBHwang;MNChang.山药新木脂素成分的研究[J]. 药学学报, 1986,21(5): 361-365
25.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报,