药学学报, 2021, 56(4): 1086-1095
引用本文:
粟敦妍, 李杰, 潘立立, 吴昊星, 毛梧宇. 荧光增强型四嗪生物正交荧光探针的设计与合成[J]. 药学学报, 2021, 56(4): 1086-1095.
SU Dun-yan, LI Jie, PAN Li-li, WU Hao-xing, MAO Wu-yu. Design and synthesis of tetrazine bioorthogonal fluorogenic probes[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 1086-1095.

荧光增强型四嗪生物正交荧光探针的设计与合成
粟敦妍1,2, 李杰1, 潘立立1, 吴昊星1, 毛梧宇1*
1. 四川大学华西医院核医学科, 四川 成都 610041;
2. 四川理工技师学院, 四川 成都 611130
摘要:
目前,生物正交荧光探针正逐步发展为一种活细胞荧光成像的理想工具。在四嗪生物正交荧光增强型探针中,四嗪扮演着生物正交反应单元及荧光淬灭单元的双重角色,该类探针荧光的“关闭”与“开启”主要通过逆电子需求的Diels-Alder(IEDDA)生物正交反应实现。因此,为实现荧光成像的高信噪比及高特异性,本文探索设计并合成了一系列具有电子给体—π共轭—电子受体(D-π-A)结构的“开-关”型四嗪荧光探针,该系列探针与亲二烯体环辛炔发生IEDDA生物正交反应,原位生成的哒嗪结构可以充当电子受体,从而产生新的具有D-π-A效应的荧光染料,开启分子内电荷转移(intramolecular charge transfer,ICT)效应。通过调节给电子基团类型及共轭程度,实现了400~647 nm的荧光调控及高达500倍的荧光开启。本文的研究成果为四嗪生物正交荧光探针的进一步优化及其在分子影像和生物医学领域的应用奠定了基础。
关键词:    四嗪      生物正交反应      哒嗪      “开-关”型荧光探针     
Design and synthesis of tetrazine bioorthogonal fluorogenic probes
SU Dun-yan1,2, LI Jie1, PAN Li-li1, WU Hao-xing1, MAO Wu-yu1*
1. Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
2. Sichuan Polytechnic Technician College, Chengdu 611130, China
Abstract:
Bioorthogonal fluorogenic probes are becoming an ideal tool for live-cell fluorescence imaging. With the tetrazine bioorthogonal fluorogenic probe that displays fluorescence enhancement, the tetrazine plays the dual-role of a bioorthogonal reaction unit and the fluorescence quenching unit. The "off" and "on" states of the fluorescence probe are mainly controlled through inverse electron demand Diels-Alder (IEDDA) bioorthogonal reaction. We designed a series of turn-on tetrazine fluorescent probes with Donor-π-Acceptor (D-π-A) structure to achieve a high signal-to-noise ratio and specificity of fluorescence imaging. This series of probes reacted with the dienophile bicyclononyne, and then generated pyridazine structure in-situ that acted as an electron acceptor, resulting in a new D-π-A effect of fluorescent dyes, turning on the intramolecular charge transfer (ICT) effect. By adjusting the electron-donating groups and the degree of conjugation, tunable fluorescence spectra between 400-647 nm with fluorescence turn-on enhanced up to 500-fold have been achieved. This research lays the foundation for the further optimization of tetrazine bioorthogonal fluorescent probes and their applications in molecular imaging and biomedical fields.
Key words:    tetrazine    bioorthogonal reaction    pyridazine    turn-on fluorescent probe   
收稿日期: 2020-12-10
DOI: 10.16438/j.0513-4870.2020-1897
基金项目: 国家自然科学基金资助项目(21807075);中国博士后科学基金(2018M643464);四川大学华西医院学科卓越发展1·3·5工程项目(ZYYC08004).
通讯作者: 毛梧宇,Tel:86-28-65261615,Fax:86-28-65261615,E-mail:wuyanmao1@sina.com
Email: wuyanmao1@sina.com
相关功能
PDF(1277KB) Free
打印本文
0
作者相关文章
粟敦妍  在本刊中的所有文章
李杰  在本刊中的所有文章
潘立立  在本刊中的所有文章
吴昊星  在本刊中的所有文章
毛梧宇  在本刊中的所有文章

参考文献:
[1] Li M, Gurram B, Lei S, et al. Recent advances in fluorescence imaging of alkaline phosphatase[J]. Chin Chem Lett, 2020. DOI:10.1016/j.cclet.2020.09.004.
[2] Cheng D, Pan Y, Yin BC, et al. A new fluorescent probe with ultralow background fluorescence for imaging of endogenous cellular selenol under oxidative stress[J]. Chin Chem Lett, 2017, 28:1987-1990.
[3] Li B, Zhou XH, Yang PY, et al. Photoactivatable fluorogenic labeling via turn-on "click-like" nitroso-diene bioorthogonal reaction[J]. Adv Sci, 2019, 6:1802039.
[4] Bai M, Cao X, Huang W, et al. Visualizing newly synthesized RNA by bioorthogonal labeling-primed DNA amplification[J]. Anal Chem, 2020, 92:8444-8449.
[5] Zhang J, Corpstein CD, Li T. Intracellular uptake of nanocrystals:probing with aggregation-induced emission of fluorescence and kinetic modeling[J]. Acta Pharm Sin B, 2020. DOI:10.1016/j.apsb.2020.09.017.
[6] Tong H, Lou K, Wang W. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer׳s disease[J]. Acta Pharm Sin B, 2015, 5:25-33.
[7] Wang K, Xi D, Liu C, et al. A ratiometric benzothiazole-based fluorescence probe for selectively recognizing HClO and its practical applications[J]. Chin Chem Lett, 2020, 31:2955-2959.
[8] Dou Y, Wang Y, Duan Y, et al. Color-tunable light-up bioorthogonal probes for in vivo two-photon fluorescence imaging[J]. Chem-Eur J, 2020, 26:4576-4582.
[9] Hernot S, van Manen L, Debie P, et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery[J]. Lancet Oncol, 2019, 20:e354-e367.
[10] Singha S, Jun YW, Sarkar S, et al. An endeavor in the reaction-based approach to fluorescent probes for biorelevant analytes:challenges and achievements[J]. Acc Chem Res, 2019, 52:2571-2581.
[11] Eun Jun M, Roy B, Han Ahn K. " Turn-on" fluorescent sensing with "reactive" probes[J]. Chem Commun, 2011, 47:7583-7601.
[12] Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand Diels-Alder reactions in chemical biology[J]. Chem Soc Rev, 2017, 46:4895-4950.
[13] Wu HX, Devaraj NK. Advances in tetrazine bioorthogonal chemistry driven by the synthesis of novel tetrazines and dienophiles[J]. Acc Chem Res, 2018, 51:1249-1259.
[14] Devaraj NK. The future of bioorthogonal chemistry[J]. ACS Cent Sci, 2018, 4:952-959.
[15] Ji X, Aghoghovbia RE, De La Cruz LKC, et al. Click and release:a high-content bioorthogonal prodrug with multiple outputs[J]. Org Lett, 2019, 21:3649-3652.
[16] Ji X, Pan Z, Yu B, et al. Click and release:bioorthogonal approaches to "on-demand" activation of prodrugs[J]. Chem Soc Rev, 2019, 48:1077-1094.
[17] Li J, Jia S, Chen PR. Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells[J]. Nat Chem Biol, 2014, 10:1003-1005.
[18] Devaraj NK, Hilderbrand S, Upadhyay R, et al. Bioorthogonal turn-on probes for imaging small molecules inside living cells[J]. Angew Chem Int Ed, 2010, 49:2869-2872.
[19] Lee Y, Cho W, Sung J, et al. Monochromophoric design strategy for tetrazine-based colorful bioorthogonal probes with a single fluorescent core skeleton[J]. J Am Chem Soc, 2018, 140:974-983.
[20] Gong YH, Miomandre F, Meallet-Renault R, et al. Synthesis and physical chemistry of s-tetrazines:which ones are fluorescent and why?[J]. Eur J Org Chem, 2009, 2009:6121-6128.
[21] Carlson JCT, Meimetis LG, Hilderbrand SA, et al. BODIPY-tetrazine derivatives as superbright bioorthogonal turn-on probes[J]. Angew Chem Int Ed, 2013, 52:6917-6920.
[22] Meimetis LG, Carlson JCT, Giedt RJ, et al. Ultrafluorogenic coumarin-tetrazine probes for real-time biological imaging[J]. Angew Chem Int Ed, 2014, 53:7531-7534.
[23] Vazquez A, Dzijak R, Dracinsky M, et al. Mechanism-based fluorogenic trans-cyclooctene-tetrazine cycloaddition[J]. Angew Chem Int Ed, 2017, 56:1334-1337.
[24] Mao WY, Tang J, Dai LQ, et al. A general strategy to design highly fluorogenic far-red and near-infrared tetrazine bioorthogonal probes[J]. Angew Chem Int Ed Engl, 2021, 60:2393-2397.
[25] Xie X, Li BW, Wang J, et al. Bioorthogonal nanosystem for near-infrared fluorescence imaging and prodrug activation in mouse model[J]. ACS Mater Lett, 2019, 1:549-557.
[26] Peng T, Hang HC. Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells[J]. J Am Chem Soc, 2016, 138:14423-14433.
[27] Murrey HE, Judkins JC, Ende CWA, et al. Systematic evaluation of bioorthogonal reactions in live cells with clickable halo tag ligands:implications for intracellular imaging[J]. J Am Chem Soc, 2015, 137:11461-11475.
[28] Macias-Contreras M, He H, Little KN, et al. SNAP/CLIP-tags and strain-promoted azide-alkyne cycloaddition (SPAAC)/inverse electron demand Diels-Alder (IEDDA) for intracellular orthogonal/bioorthogonal labeling[J]. Bioconjugate Chem, 2020, 31:1370-1381.
[29] Bojtár M, Németh K, Domahidy F, et al. Conditionally activatable visible-light photocages[J]. J Am Chem Soc, 2020, 142:15164-15171.
[30] Park YD, Park JH, Hur MG, et al. Fluorescent 2-styrylpyridazin-3(2H)-one derivatives as probes targeting amyloid-beta plaques in Alzheimer's disease[J]. Bioorg Med Chem Lett, 2012, 22:4106-4110.
[31] Mao WY, Shi W, Li J, et al. Organocatalytic and scalable syntheses of unsymmetrical 1,2,4,5-tetrazines by thiol-containing promotors[J]. Angew Chem Int Ed, 2019, 58:1106-1109.
[32] Yang J, Karver MR, Li W, et al. Metal-catalyzed one-pot synthesis of tetrazines directly from aliphatic nitriles and hydrazine[J]. Angew Chem Int Ed, 2012, 51:5222-5225.
[33] Grimm JB, English BP, Chen J, et al. A general method to improve fluorophores for live-cell and single-molecule microscopy[J]. Nat Methods, 2015, 12:244-250.
[34] Jin MY, Kim BM, Jung HS, et al. Indoline-based molecular engineering for optimizing the performance of photoactive thin films[J]. Adv Funct Mater, 2016, 26:6876-6887.
[35] Burnett DA, Bursavich MG, McRiner AJ. Spiro-oxadiazoline compounds as agonists of α-7-nicotinic acetylcholine receptors and their preparation:US, 2014/063242[P]. 2015-05-07.
[36] Shaya J, Fontaine-Vive F, Michel BY, et al. Rational design of push-pull fluorene dyes:synthesis and structure-photophysics relationship[J]. Chem-Eur J, 2016, 22:10627-10637.
[37] Li X, Zheng Z, Jiang W, et al. New D-A-π-A organic sensitizers for efficient dye-sensitized solar cells[J]. Chem Commun, 2015, 51:3590-3592.
[38] Younes AH, Zhang L, Clark RJ, et al. Electronic structural dependence of the photophysical properties of fluorescent heteroditopic ligands-implications in designing molecular fluorescent indicators[J]. Org Biomol Chem, 2010, 8:5431-5441.
[39] Gester S, Pietzsch J, Wuest FR. Synthesis of 18F-labelled stilbenes from 4-[18F]fluorobenz-aldehyde using the Horner-Wadsworth-Emmons reaction[J]. J Label Compd Rad, 2007, 50:105-113.
相关文献:
1.王晓蒙, 李杰, 沈国华, 潘立立, 田蓉, 孙洪宝, 吴昊星.四嗪生物正交点击-释放反应释放多肽研究与应用[J]. 药学学报, 2020,55(7): 1634-1646