药学学报, 2021, 56(4): 1120-1126
引用本文:
李娜, 杨远贵, 陈玥, 徐芮, 谷丽华, 谢元彪, 李淞明, 詹常森, 王峥涛, 杨莉. 超临界流体色谱法分析茯苓不同药用部位中三萜酸类成分[J]. 药学学报, 2021, 56(4): 1120-1126.
LI Na, YANG Yuan-gui, CHEN Yue, XU Rui, GU Li-hua, XIE Yuan-biao, LI Song-ming, ZHAN Chang-sen, WANG Zheng-tao, YANG Li. Analysis of triterpenoic acids in different medicinal parts of Poria cocos (Schw.) Wolf using supercritical fluid chromatography[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 1120-1126.

超临界流体色谱法分析茯苓不同药用部位中三萜酸类成分
李娜1,2, 杨远贵1, 陈玥1, 徐芮1, 谷丽华1, 谢元彪3, 李淞明3, 詹常森3, 王峥涛1, 杨莉1,2*
1. 上海中医药大学中药研究所, 中药标准化教育部重点实验室, 国家中医药管理局中药新资源与质量评价重点实验室, 上海 201203;
2. 上海中医药大学交叉科学研究院, 上海 201203;
3. 上海和黄药业有限公司, 上海 201401
摘要:
首次采用超高效合相色谱-光电二级阵列管-四级飞行时间质谱联用技术(UPC2-PDA-Q-TOF/MSE)建立定性和定量方法,对茯苓不同药用部位(茯苓皮、赤茯苓、茯苓、茯神)进行质量评价。利用UPC2-PDA从茯苓类药材中共检测到18个色谱峰,结合主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)对4个药用部位进行比较,结果表明不同药用部位成分差异较大,并筛选出茯苓新酸A、茯苓新酸B、去氢齿孔酸、松苓新酸为主要三萜酸类差异化合物。进一步结合茯苓类药材中的共有活性成分猪苓酸C,采用UPC2-PDA法建立了茯苓类药材中上述5种三萜酸类化合物的含量测定方法。该方法可使5个三萜酸成分在15 min内达到基线分离,有机试剂甲醇的用量仅为HPLC方法的3.63%。以5种三萜酸成分为指标,茯苓不同药用部位中三萜酸含量由高到低依次为茯苓皮、赤茯苓、茯神和茯苓。本实验所建立的方法具有简便、快速、节省溶剂等优点,采用环境友好型气体二氧化碳为流动相,在减少环境污染方面具有独特优势,可为茯苓药材及其相关产品开发和标准制定提供参考。
关键词:    茯苓      不同部位      三萜酸      超临界流体色谱法      含量测定     
Analysis of triterpenoic acids in different medicinal parts of Poria cocos (Schw.) Wolf using supercritical fluid chromatography
LI Na1,2, YANG Yuan-gui1, CHEN Yue1, XU Rui1, GU Li-hua1, XIE Yuan-biao3, LI Song-ming3, ZHAN Chang-sen3, WANG Zheng-tao1, YANG Li1,2*
1. The MOE Key Laboratory for Standardization of Chinese Medicines and SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
2. Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
3. Shanghai Hutchison Pharmaceuticals Co., Ltd., Shanghai 201401, China
Abstract:
Qualitative and quantitative methods were used to establish the quality of different medicinal parts of Poria cocos (Poriae Cutis, rubra Poria, white Poria, Poria cum Radix Pini) by using ultra-performance convergence chromatography coupled with photo-diode array and quadrupole time-of-flight mass spectrometry (UPC2-PDA-Q-TOF/MSE). A total of 18 chromatographic peaks were detected from Poria cocos by UPC2-PDA. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to compare the four medicinal parts. The results showed that there were significant differences in the components of different medicinal parts, and the main triterpenoic acids were poricoic acid A, poricoic acid B, dehydroeburicoic acid, and dehydrotrametenolic acid. When combined with the common active component polyporenic acid C, a method for determination of five triterpenoic acids in different parts of Poria cocos was established. These components could be separated within 15 min, and the amount of methanol was 3.63% of that of HPLC method. Taking the five triterpenoid acids as an index, the content of triterpenoid acids in different parts of Poria cocos from high to low were Poriae Cutis, rubra Poria, white Poria and Poria cum Radix Pini. The method is simple, rapid, and uses minimal solvent. The mobile phase of environment-friendly gas carbon dioxide has unique advantages in reducing environmental pollution, which can provide a basis for the development and standard formulation of Poria cocos and its related products.
Key words:    Poria cocos    different medicinal part    triterpenoid acid    ultra-performance convergence chromatography    assay determination   
收稿日期: 2021-01-08
DOI: 10.16438/j.0513-4870.2021-0045
基金项目: 国家自然科学基金资助项目(81920108033,82074011).
通讯作者: 杨莉,Tel:86-21-51322506,E-mail:yl7@shutcm.edu.cn
Email: yl7@shutcm.edu.cn
相关功能
PDF(738KB) Free
打印本文
0
作者相关文章
李娜  在本刊中的所有文章
杨远贵  在本刊中的所有文章
陈玥  在本刊中的所有文章
徐芮  在本刊中的所有文章
谷丽华  在本刊中的所有文章
谢元彪  在本刊中的所有文章
李淞明  在本刊中的所有文章
詹常森  在本刊中的所有文章
王峥涛  在本刊中的所有文章
杨莉  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[M]. Beijing:China Medical Science Press, 2020:251.
[2] Zhu LX, Wang X, Li SC, et al. Qualitative and quantitative characterization of carbohydrate profiles in three different parts of Poria cocos[J]. J Pharm Biomed Anal, 2020, 179:113009.
[3] Liu J, Zhou J, Zhang QQ, et al. Monosaccharide analysis and fingerprinting identification of polysaccharides from Poria cocos and Polyporus umbellatus by HPLC combined with chemometrics methods[J]. Chin Herb Med, 2019, 11:406-411.
[4] Deng TM, Peng DY,YuNJ, et al. Research progress on chemical composition and pharmacological effects of Poria cocos and predictive analysis on quality markers[J]. Chin Tradit Herb Drugs (中草药), 2020, 51:2703-2717.
[5] Jiang Y, Fan LP. Evaluation of anticancer activities of Poria cocos ethanol extract in breast cancer:in vivo and in vitro, identification and mechanism[J]. J Ethnopharmacol, 2020, 257:112851.
[6] Hu GS, Huang CG, Zhang Y, et al. Accumulation of biomass and four triterpenoids in two-stage cultured Poria cocos mycelia and diuretic activity in rats[J]. Chin J Nat Med, 2017, 15:265-270.
[7] Zou YT, Zhou J, Wu CY, et al. Protective effects of Poria cocos and its components against cisplatin-induced intestinal injury[J]. J Ethnopharmacol, 2021, 269:113722.
[8] Chen WD, Peng H, Wang YY, et al. Historical evolution and changes of Poria cocos[J]. Chin Tradit Herb Drugs (中草药), 2017, 48:5032-5038.
[9] Tian SS, Liu XQ, Feng WH, et al. Quality evaluation of Poria based on specific chromatogram andquantitative analysis of multicomponents[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:1371-1380.
[10] Tian SS, Zhao XM, Liu Y, et al. Studies on quality standards of Poria[J]. China J Chin Mater Med (中国中药杂志), 2020, 45:1734-1744.
[11] Sang QN, Jia QQ, Zhang HY, et al. Chemical profiling and quality evaluation of Zhishi-Xiebai-Guizhi Decoction by UPLC-Q-TOF-MS and UPLC fingerprint[J]. J Pharm Biomed Anal, 2021, 194:113771.
[12] Yan P, Jia SL, Li S, et al. Strategy for the identification and quantitative analysis of thephytochemicals of traditional Chinese medicine by LC-MS/MS[J]. Acta Pharm Sin (药学学报), 2020, 55:1494-1503.
[13] Zhang GH, Wang HX, Xie WY, et al. Comparison of triterpene compounds of four botanical parts from Poria cocos (Schw.) Wolf using simultaneous qualitative and quantitative method and metabolomics approach[J]. Food Res Int, 2019, 211:666.
[14] Zhu LX, Xu J, Wang RJ, et al. Correlation between quality and geographical origins of Poria cocos revealed by qualitative fingerprint profiling and quantitative determination of triterpenoid acids[J]. Molecules, 2018, 23:2200.
[15] Zhao QL, Zhang L, Bian XK, et al. Analysis of 8 triterpene acids in Poria from different habitats based on UPLC-QTRAP-MS[J]. Chin J Pharm Anal (药物分析), 2020, 40:1169-1177.
[16] Yutaka K, Yoshihiro I, Takeshi B. Development of a novel method for polar metabolite profiling by supercritical fluid chromatography/tandem mass spectrometry[J]. J Chromatogr A, 2020, 1632:461587.
[17] Onay S, Hofer S, Ganzera M. Rapid analysis of nine lignans in Schisandra chinensis by supercritical fluid chromatography using diode array and mass spectrometric detection[J]. J Pharm Biomed Anal, 2020, 185:113254.
[18] Feng GF, Zheng Y, Sun YF, et al. A targeted strategy for analyzing untargeted mass spectral data to identify lanostane-type triterpene acids in Poria cocos by integrating a scientific information system and liquid chromatography-tandem mass spectrometry combined with ion mobility spectrometry[J]. Anal Chim Acta, 2018, 1033:87-99.
[19] Zhu LX, Xu J, Zhang SJ, et al. Qualitatively and quantitatively comparing secondary metabolites in three medicinal parts derived from Poria cocos (Schw.) Wolf using UHPLC-QTOF-MS/MS-based chemical profiling[J]. J Pharm Biomed Anal, 2018, 150:278-286.
相关文献:
1.邹叶廷, 徐金娣, 龙芳, 张业清, 李松林.整合UPLC-QTOF-MS/MS全扫描和模拟MRM方法综合评价茯苓乙醇提取物与后续乙酸乙酯萃取物三萜酸类组分化学一致性[J]. 药学学报, 2019,54(1): 130-137
2.车 爽 李 清 霍艳双 陈晓辉 毕开顺.波长转换RP-HPLC法同时测定茯苓不同部位中5种三萜酸含量[J]. 药学学报, 2010,45(4): 494-497