药学学报, 2021, 56(4): 1163-1169
引用本文:
李蓉蓉, 王缘, 刘勇, 王延妮, 刘哲, 马凤森*. 金属和可溶性微针及其使用参数对皮肤孔道形成与闭合的影响[J]. 药学学报, 2021, 56(4): 1163-1169.
LI Rong-rong, WANG Yuan, LIU Yong, WANG Yan-ni, LIU Zhe, MA Feng-sen*. Effects of metal or dissolving microneedles and its parameters of operation on the formation and closure of skin microchannels[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 1163-1169.

金属和可溶性微针及其使用参数对皮肤孔道形成与闭合的影响
李蓉蓉, 王缘, 刘勇, 王延妮, 刘哲, 马凤森*
浙江工业大学药学院, 生物制剂与材料实验室, 浙江 杭州 310014
摘要:
本文主要研究金属和可溶性微针对皮肤微孔道形成与闭合的影响因素及效果。采用不同长度、针尖间距和基座面积的金属(不锈钢)微针,形状分别为铅笔形和圆锥形,以及不同针尖间距的铅笔形可溶性微针。将微针刺入在除毛小鼠和大鼠的皮肤上,通过经皮水分丢失(transepidermal water loss,TEWL)法和亚甲蓝染色法研究微针施用参数、自身参数和动物对孔道产生的影响;通过视觉观察微针引起的皮肤局部刺激性现象。动物实验已获得浙江工业大学实验动物福利与伦理委员会批准。不锈钢金属微针刺入皮肤后保持30 s以上,刺入力分别为2、4和8 N,形成孔道的TEWL初始值分别为12.9、33.0和40.4 g·m-2·h-1;当长度分别为400、600和800 μm,形成孔道的TEWL初始值分别为37.1、40.4和49.5 g·m-2·h-1;当针尖间距分别为400、600和800 μm,形成孔道的TEWL初始值分别为33.2、40.4和55.8 g·m-2·h-1;当基座面积分别为0.16、0.35和0.62 cm2,形成孔道的TEWL初始值分别为35.1、40.4和67.1 g·m-2·h-1,而圆锥形和铅笔形的微针产生的影响是近似的。铅笔形的可溶微针刺入皮肤,针尖间距分别为400、600和800 μm,形成孔道的TEWL初始值分别为49.8、60.5和70.5 g·m-2·h-1。不同性别和品系动物皮肤的TEWL基线值有所不同,但是孔道形成与闭合的趋势近似。微针引起的轻微红斑在24 h内消退。不同参数微针对皮肤孔道产生的影响有一定差异,但孔道都可在24或48 h内闭合,皮肤局部刺激性轻微。
关键词:    微针      经皮水分丢失法      染色法      微孔道      因素     
Effects of metal or dissolving microneedles and its parameters of operation on the formation and closure of skin microchannels
LI Rong-rong, WANG Yuan, LIU Yong, WANG Yan-ni, LIU Zhe, MA Feng-sen*
Biologics and Biomaterials Laboratory, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
Abstract:
To investigate the influence factors and effects of metal or dissolving microneedles on the formation and healing of skin microchannels, the pencil-shaped or conical stainless steel microneedles with different lengths, tip to tip space and base area, and the pencil-shaped dissolving microneedles with different tip to tip space were used. The microneedles were applied to the skin of epilatory mice and rats, and the effects of various microneedle parameters, application parameters, and animals on the microchannels were explored by the transepidermal water loss (TEWL) and methylene blue staining. Visually observe the skin local irritation caused by the microneedles. The animal experiments were approved by the Animal Experiments Welfare and Ethical Committee of Zhejiang University of Technology. The application time of the microneedle should be maintained at 30 s or more. When the insertion forces were 2, 4, 8 N, and the TEWL initial values of the formed microchannels were 12.9, 33.0, 40.4 g·m-2·h-1, respectively. When the length of metal microneedle were 400, 600, 800 μm, and the TEWL initial values of the formed microchannels were 37.1, 40.4, 49.5 g·m-2·h-1, respectively. When the tip to tip space of metal microneedle were 400, 600, 800 μm, and the TEWL initial values of the formed microchannels were 33.2, 40.4, 55.8 g·m-2·h-1, respectively. When the base area of metal microneedle were 0.16, 0.35, 0.62 cm2, and the TEWL initial values of the formed microchannels were 35.1, 40.4, 67.1 g·m-2·h-1, respectively. The effects of conical and pencil-shaped microneedles are similar. When the tip to tip space of pencil shaped dissolving microneedle were 400, 600, 800 μm, and the TEWL initial values of the formed microchannels were 49.8, 60.5, 70.5 g·m-2·h-1, respectively. The TEWL baseline values of animal skins of different genders and series are different, but the tendency of microchannels formation and closure is similar. Visual inspection revealed that the slight erythema caused by the microneedles subsided within 24 h. Microneedles of different parameters have different effects on microchannels. The microchannels closed within 24 or 48 h, and the skin local irritation caused by microneedle was mild.
Key words:    microneedles    transepidermal water loss    methylene blue staining    microchannels    factor   
收稿日期: 2020-11-02
DOI: 10.16438/j.0513-4870.2020-1713
基金项目: 浙江省重点科技创新团队计划资助项目(2013TD15).
通讯作者: 马凤森,Tel:86-571-88320218,E-mail:merrigen@126.com
Email: merrigen@126.com
相关功能
PDF(894KB) Free
打印本文
0
作者相关文章
李蓉蓉  在本刊中的所有文章
王缘  在本刊中的所有文章
刘勇  在本刊中的所有文章
王延妮  在本刊中的所有文章
刘哲  在本刊中的所有文章
马凤森*  在本刊中的所有文章

参考文献:
[1] Duarah S, Sharma M, Wen JY. Recent advances in microneedle-based drug delivery:special emphasis on its use in paediatric population[J]. Eur J Pharm Sci, 2019, 136:48-69.
[2] Dou JJ, Yan JH, Xu K, et al. Transdermal delivery of Gentiana macrophylla complex components system under micro-needle conditions[J]. Acta Pharm Sin (药学学报), 2011, 46:1137.
[3] Donnelly RF, Singh TRR, Woolfson AD. Microneedle-based drug delivery systems:microfabrication, drug delivery, and safety[J]. Drug Deliv, 2010, 17:187-207.
[4] Henry S, Mcallister DV, Allen MG, et al. Microfabricated microneedles:a novel approach to transdermal drug delivery[J]. Daru, 1998, 87:922-925.
[5] Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery[J]. Nat Rev Drug Discov, 2004, 3:115-124.
[6] Brogden NK, Milewski M, Ghosh P, et al. Diclofenac delays micropore closure following microneedle treatment in human subjects[J]. J Control Release, 2012, 163:220-229.
[7] Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array[J]. Nanomedicine, 2005, 1:184-190.
[8] Chen YJ, Yang S, Ai Q, et al. Microneedle-mediated intradermal injection with hyaluronic acid for the treatment of sensitive skin:a split-face study[J]. Chin J Dermatol (中华皮肤科杂志), 2019, 52:899-906.
[9] Sharma S, El-laboudi A, Remmy M, et al. A pilot study in humans of microneedle sensor arrays for continuous glucose monitoring[J]. Anal Methods, 2018, 10:2088-2095.
[10] Shen C, Xia X, Gao WY, et al. Research progress in the microneedle assisted transdermal drug delivery system[J]. Chin J Pharms (中国医药工业杂志), 2017, 48:965-973.
[11] Edens C, Collins ML, Goodson NJL, et al. A microneedle patch containing measles vaccine is immunogenic in non-human primates[J]. Vaccine, 2015, 33:4712-4718.
[12] Zhan HH, Huang YC, Ma FS. Research progress in the evaluation methods of microneedles puncture performance[J]. Chin Pharmacol J (中国药学杂志), 2018, 53:1890-1895.
[13] Park JH, Kim CB, Lee HJ, et al. Development and clinical study of the use of infrared radiation to accelerate the dissolution rate of a microneedle array patch (MAP)[J]. Drug Deliv Transl Res, 2020, 10:791-800.
[14] Gomaa YA, Morrow DIJ, Garland MJ, et al. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function:assessments by transepidermal water loss[J]. Toxicol In Vitro, 2010, 24:1971-1978.
[15] Haq MI, Smith E, John DN, et al. Clinical administration of microneedles:skin puncture, pain and sensation[J]. Biomed Microdevices, 2009, 11:35-47.
[16] Chilcott RP, Dalton CH, Emmanuel AJ, et al. Transepidermal water loss does not correlate with skin barrier function in vitro[J]. J Invest Dermatol, 2002, 118:871-875.
[17] Verbaan FJ, Bal SM, DJVD Berg, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin[J]. J Control Release, 2007, 117:238-245.
[18] Yan G, Warner KS, Zhang J, et al. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery[J]. Int J Pharm, 2010, 391:7-12.
[19] Arya JM, Dewitt K, Scott-Garrard M, et al. Rabies vaccination in dogs using a dissolving microneedle patch[J]. J Control Release, 2016, 239:19-26.
[20] Aung NN, Ngawhirunpat T, Rojanarata T, et al. Fabrication, characterization and comparison of α-arbutin loaded dissolving and hydrogel forming microneedles[J]. Int J Pharm, 2020, 586:119508.
[21] Liu S, Quan YS, Shen WN, et al. Preparation and characterization of novel hyaluronic acid microneedles for insulin transdermal delivry[J]. J Shenyang Pharm Univ (沈阳药科大学学报), 2010, 21:6-10.
[22] Donnelly RF, Garland MJ, Morrow DI, et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution[J]. J Control Release, 2010, 147:333-341.
[23] Kelchen MN, Siefers KJ, Converse CC, et al. Micropore closure kinetics are delayed following microneedle insertion in elderly subjects[J]. J Control Release, 2016, 225:294-300.
[24] Zhan HH, Huang YC, Ma FS, et al. Quality evaluation of lidocaine hydrochloride rapid onset local anesthesia preparation based on microneedles technology[J]. Acta Pharm Sin (药学学报), 2018, 53:1371-1376.
[25] Larrañeta E, Moore J,Vicente-Pérez, et al. A proposed model membrane and test method for microneedle insertion studies[J]. Int J Pharm, 2014, 472:65-73.
[26] Andersen TE, Andersen AJ, Petersen RS, et al. Drug loaded biodegradable polymer microneedles fabricated by hot embossing[J]. Microelectron Eng, 2018, 195:57-61.
[27] Chen Y, Chen BZ, Wang QL, et al. Fabrication of coated polymer microneedles for transdermal drug delivery[J]. J Control Release, 2017, 265:14-21.
[28] Liu S, Jin MN, Quan YS, et al. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin[J]. Eur J Pharm Biopharm, 2014, 86:267-276.
[29] Vicente-Perez EM, Quinn HL, McAlister E, et al. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo[J]. Pharm Res, 2016, 33:3072-3080.
[30] Gupta J, Gill HS, Andrews SN, et al. Kinetics of skin resealing after insertion of microneedles in human subjects[J]. J Control Release, 2011, 154:148-155.
[31] Shi LJ, Wu T, Wu ZH. Morphology and biochemical parameters in rats with D-galactose-induced skin ageing[J]. Chin J Dermatol (中华皮肤科杂志), 2005, 38:165-167.
[32] Ma LW, Zhao HW, Zhou BR, et al. Protective effects of soybean oligopeptide on UVB-induced skin photoaging in mices[J]. Chin J Dermatovenereol (中国皮肤性病学杂志), 2014, 28:18-21.
[33] Elkeeb R, Hui X, Chan H, et al. Correlation of transepidermal water loss with skin barrier properties in vitro:comparison of three evaporimeters[J]. Skin Res Technol, 2010, 16:9-15.