药学学报, 2021, 56(4): 1188-1196
引用本文:
李敏, 张全芳, 蒲高斌, 刘艳艳, 刘谦, 步迅, 张永清. 北柴胡成花基因的克隆及时空表达分析[J]. 药学学报, 2021, 56(4): 1188-1196.
LI Min, ZHANG Quan-fang, PU Gao-bin, LIU Yan-yan, LIU Qian, BU Xun, ZHANG Yong-qing. Cloning and spatio-temporal expression analysis of flowering genes in Bupleurum chinense DC.[J]. Acta Pharmaceutica Sinica, 2021, 56(4): 1188-1196.

北柴胡成花基因的克隆及时空表达分析
李敏1, 张全芳2, 蒲高斌1, 刘艳艳2, 刘谦1, 步迅2, 张永清1*
1. 山东中医药大学, 山东 济南 250355;
2. 山东省农业科学院生物技术研究中心, 山东 济南 250100
摘要:
开花是植物生长发育的关键环节,本研究从北柴胡植株中克隆得到4个与成花相关的基因,分别命名为BcSVPBcPAF1BcCOBcFT,并进行了同源性比对;以actin和EF-1α作为双内参,对4个基因在北柴胡植株不同器官和不同发育阶段的时空表达差异进行分析。结果表明,BcSVP主要在根中表达,相对表达量较低;BcPAF1BcCO在不同部位均有较高表达,二者相对表达量伴随花期进程均呈先上升后缓慢下降趋势;BcFT基因主要在茎中表达,相对表达量在盛花期急剧上升。本文首次克隆并分析了与北柴胡植株成花相关4个基因的相对表达量,为解析柴胡植株成花分子调控机制奠定了基础。
关键词:    北柴胡      成花基因      克隆      时空表达模式     
Cloning and spatio-temporal expression analysis of flowering genes in Bupleurum chinense DC.
LI Min1, ZHANG Quan-fang2, PU Gao-bin1, LIU Yan-yan2, LIU Qian1, BU Xun2, ZHANG Yong-qing1*
1. Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
2. Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
Abstract:
In this study we isolated and cloned four flowering-related genes from Bupleurum chinense DC., named BcSVP, BcPAF1, BcCO, and BcFT. Actin and EF-1α were used as double internal standards to analyze the spatial and temporal differences in the expression of four genes in different tissues and flowering stages of Bupleurum chinense DC. qRT-PCR analysis showed that the BcSVP gene was mainly expressed in root, and its relatively expression level was low. BcPAF1 and BcCO were both highly expressed in different parts, and their relative expression level showed an increasing trend and then slowly decreasing with the flowering development process. BcFT was mainly expressed in the stem, and the relatively expression level was increased sharply in the flowering stage. In summary, four genes related to flowering of Bupleurum chinense DC. were cloned and their relative expression levels were characterized, laying a foundation for elucidating the molecular mechanisms that regulate the flowering stage of Bupleurum chinense.
Key words:    Bupleurum chinense    flowering gene    cloning    spatio-temporal expression   
收稿日期: 2020-12-21
DOI: 10.16438/j.0513-4870.2020-1946
基金项目: 山东省高校中药质量控制与全产业链建设协同创新中心(CYLXTCX2020);山东省重点研发计划(2019GSF108163);山东省创新公共服务平台计划(2018JGX111);山东省政府公派出国留学项目(201802036);山东省重点研发计划“中医经方精准化关键技术示范研究”课题(2016CYJS08A01).
通讯作者: 张永清,E-mail:zyq622003@126.com
Email: zyq622003@126.com
相关功能
PDF(2196KB) Free
打印本文
0
作者相关文章
李敏  在本刊中的所有文章
张全芳  在本刊中的所有文章
蒲高斌  在本刊中的所有文章
刘艳艳  在本刊中的所有文章
刘谦  在本刊中的所有文章
步迅  在本刊中的所有文章
张永清  在本刊中的所有文章

参考文献:
[1] Kobayashi Y, Weigel D. Move on up, it's time for change-mobile signals controlling photoperiod-dependent flowering[J]. Genes Dev, 2007, 21:2371-2384.
[2] Fu YF, Meng FJ. Gene regulation of flowering transition[J]. Plant Physiol J (植物生理学通讯), 1997, 33:393-400.
[3] Ou CG, Mao JH, Liu LJ, et al. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis[J]. Plant Biol, 2017, 19:286-297.
[4] Lv B. Genetic Transformation of Plant Flowering Gene FT and Its Involvement in Flowering Control (植物开花基因FT的遗传转化及其参与开花调控的研究)[D]. Taian:Shandong Agricultural University, 2014.
[5] Liu LJ, Ou CG, Zhao ZW, et al. Function analysis of carrot SOC1 homologues responding to photoperiod[J]. Acta Hort Sin (园艺学报), 2016, 43:1099-1106.
[6] Blümel M, Dally N, Jung C. Flowering time regulation in crops:what did we learn from Arabidopsis?[J]. Curr Opin Biotechnol, 2015, 32:121-129.
[7] Chinese Pharmacopoeia Commission. Pharmacopeia of People's Republic of China (中华人民共和国药典)[S]. Beijing:China Medical Science Press, 2015:280-281.
[8] Qin XM, Gao Y, Tian JS, et al. Ideas and strategies from quality evaluation of Radix Bupleurum for development of new anti-depressant drugs[J]. Acta Pharm Sin (药学学报), 2019, 54:1402-1408.
[9] Xin G, Zhao XT, Huang XW, et al. Research progress on chemical constituents and pharmacological effects of Bupleurum[J]. Jilin J Chin Med (吉林中医药学报), 2018, 38:1196-1198.
[10] Meng XC, Sun H, Yang G, et al. Effect of topping on yield and quality of Bupleurum chinense[J]. J Chin Med Mater (中药材), 2008, 31:336-337.
[11] Yu Y, Wang XQ, Liu X, et al. Influence of inflorescence plucking and tip pruning on vegetative characters and root production of Bupleurum chinense[J]. J Jilin Agric Univ (吉林农业大学学报), 2003, 25:303-306.
[12] Zhou LY, Liu T, Wang S, et al. Real-time PCR and its application in study of traditional Chinese medicine[J]. Mod Chin Med (中国现代中药), 2016, 18:246-251, 262.
[13] Zhao Y, Yang LL, Han M, et al. Correlation between content of saikosaponin and expression of key enzyme genes in different parts of Bupleurum chinense[J]. Chin Tradit Herb Drugs (中草药), 2019, 50:2433-2441.
[14] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Method, 2001, 25:402-408.
[15] Yang K, Zhang CH, Li SX, et al. Cloning and expression analysis of grape SVP-like MADS-box gene[J]. J Northwest Forest Univ (西北林学院学报), 2012, 27:117-123.
[16] Cao AN. Study on the Key Factors Affecting the Quality and Yield of Bupleurum Chinense DC (影响柴胡质量与产量的关键因素研究)[D]. Lanzhou:Gansu Agricultural University, 2016.
[17] Zhao DY, Hao QX, Kang LP, et al. Advance in studying early bolting of Umbelliferae medicinal plant[J]. China J Chin Mater Med (中国中药杂志), 2016, 41:20-23.
[18] Ono K, Hirohata M, Yamada M. Alpha-synuclein assembly as a therapeutic target of Parkinson's disease and related disorders[J]. Curr Pharm Design, 2008, 14:3247-3266.
[19] Yuan BC, Li WD, Ma YS, et al. The molecular identification of Bupleurum medicinal species and the quality investigation of Bupleuri Radix[J]. Acta Pharm Sin (药学学报), 2017, 52:162-171.
[20] Kim YJ, Jeon JN, Jang MG, et al. Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer[J]. J Gins Res, 2014, 38:66-72.
[21] Ye YJ, Xie DJ, Yang DM, et al. Selection of reference genes for quantitative real-time PCR in Morinda officinalis[J]. Chin Tradit Herb Drugs (中草药), 2020, 51:1060-1068.
[22] Zhang YN, Zhou YP, Chen QH, et al. Molecular basis of flowering time regulation in Arabidopsis[J]. Chin Bull Bot (植物学报), 2014, 49:469-482.
[23] Suárez-López P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J]. Nature, 2001, 410:1116-1120.
[24] Zhu FJ, Liu J, Yuan Y, et al. Expression analysis of Hsp70-related miRNA in Lonicera japonica Thunb. during different flowering stages[J]. Acta Pharm Sin (药学学报), 2018, 53:1202-1208.
[25] Spanudakis E, Jackson S. The role of microRNAs in the control of flowering time[J]. Exp Bot, 2014, 65:365-380.
[26] Yamaguchi A, Kobayashi Y, Goto K, et al. TWIN SISTER OF FT (TSF) acts as a floral pathway integractor redundantly with FT[J]. Plant Cell Physiol, 2005, 46:1175-1189.
[27] Yun H, Hyun Y, Kang MJ, et al. Identification of regulators required for the reactivation of FLOWERING LOCUS C during Arabidopsis reproduction[J]. Planta, 2011, 234:1237-1250.