药学学报, 2021, 56(5): 1211-1216
引用本文:
葛孚晶, 曾晨鸣, 严芳洁, 钱美佳, 王伟华, 罗沛华, 翁勤洁, 庄让笑, 席建军, 黄劲松, 杨波, 朱虹, 何俏军. 甘草酸:一种治疗新型冠状肺炎的潜在药物[J]. 药学学报, 2021, 56(5): 1211-1216.
GE Fu-jing, ZENG Chen-ming, YAN Fang-jie, QIAN Mei-jia, WANG Wei-hua, LUO Pei-hua, WENG Qin-jie, ZHUANG Rang-xiao, XI Jian-jun, HUANG Jin-song, YANG Bo, ZHU Hong, HE Qiao-jun. Glycyrrhizic acid:a potential drug against COVID-19[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1211-1216.

甘草酸:一种治疗新型冠状肺炎的潜在药物
葛孚晶1, 曾晨鸣1, 严芳洁2, 钱美佳1, 王伟华1, 罗沛华1, 翁勤洁1, 庄让笑3, 席建军3, 黄劲松3, 杨波1, 朱虹1*, 何俏军1,2*
1. 浙江大学药学院, 浙江省抗肿瘤药物临床前研究重点实验室, 浙江 杭州 310058;
2. 浙江大学智能创新药物研究院, 浙江 杭州 310018;
3. 杭州市西溪医院, 浙江 杭州 310023
摘要:
新型冠状病毒引发的肺炎严重威胁全球人类的生命和健康,造成大量患者的死亡。病毒感染和剧烈炎症是造成患者死亡的重要原因,因此对患者进行抗病毒治疗的同时联合抗炎治疗就显得尤为关键。甘草酸是甘草根提取物的主要成分,具有广泛的药理作用和高效、低毒的作用特点,其制剂已经广泛应用于治疗慢性肝炎等疾病。甘草酸可以调节多种细胞因子的表达和释放,发挥显著的抗炎作用。同时,甘草酸对多种类型病毒也显示出显著的抑制作用。因此,对甘草酸治疗新型冠状病毒肺炎展开相关研究,有望为临床治疗提供潜在新方案。
关键词:    新型冠状病毒      新型冠状病毒肺炎      甘草酸      细胞因子风暴      抗炎治疗      抗病毒治疗     
Glycyrrhizic acid:a potential drug against COVID-19
GE Fu-jing1, ZENG Chen-ming1, YAN Fang-jie2, QIAN Mei-jia1, WANG Wei-hua1, LUO Pei-hua1, WENG Qin-jie1, ZHUANG Rang-xiao3, XI Jian-jun3, HUANG Jin-song3, YANG Bo1, ZHU Hong1*, HE Qiao-jun1,2*
1. Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China;
2. Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China;
3. Xixi Hospital of Hangzhou, Hangzhou 310023, China
Abstract:
Pneumonia caused by SARS-CoV-2 has seriously threatened human life and health worldwide and caused a large number of deaths. Viral infection and acute inflammation are important causes of death, so it is particularly important to combine antiviral therapy with anti-inflammatory therapy. Glycyrrhizic acid, the main component of the glycyrrhizic root extract, has a wide range of pharmacological effects as well as high efficiency and low toxicity, its preparation has been widely used in the treatment of chronic hepatitis and other diseases. Glycyrrhizic acid can regulate the expression and release of a variety of cytokines and play a significant anti-inflammatory effect. At the same time, glycyrrhizic acid also showed significant inhibition towards a variety types of viruses. Therefore, the potential application of glycyrrhizic acid as COVID-19 treatment should be explored.
Key words:    SARS-CoV-2    COVID-19    glycyrrhizic acid    cytokine storm    anti-inflammatory treatment    antiviral therapy   
收稿日期: 2020-12-08
DOI: 10.16438/j.0513-4870.2020-1894
基金项目: 浙江省自然科学基金资助项目(LED20H190002);浙江省重点研发计划(2021C03042).
通讯作者: 何俏军,Tel:86-571-88208400,E-mail:qiaojunhe@zju.edu.cn;朱虹,E-mail:hongzhu@zju.edu.cn
Email: qiaojunhe@zju.edu.cn;hongzhu@zju.edu.cn
相关功能
PDF(872KB) Free
打印本文
0
作者相关文章
葛孚晶  在本刊中的所有文章
曾晨鸣  在本刊中的所有文章
严芳洁  在本刊中的所有文章
钱美佳  在本刊中的所有文章
王伟华  在本刊中的所有文章
罗沛华  在本刊中的所有文章
翁勤洁  在本刊中的所有文章
庄让笑  在本刊中的所有文章
席建军  在本刊中的所有文章
黄劲松  在本刊中的所有文章
杨波  在本刊中的所有文章
朱虹  在本刊中的所有文章
何俏军  在本刊中的所有文章

参考文献:
[1] Singhal T. A review of coronavirus disease-2019(COVID-19)[J]. Indian J Pediatr, 2020, 87:281-286.
[2] Perrin P, Collongues N, Baloglu S, et al. Cytokine release syndrome-associated encephalopathy in patients with COVID-19[J]. Eur J Neurol, 2021, 28:248-258.
[3] Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus[J]. J Med Chem, 2005, 48:1256-1259.
[4] Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)[J]. Mil Med Res, 2020, 7:4.
[5] Yang L, Wang HQ, Li YH. Research progress on therapeutic drugs for corona virus disease 2019[J]. Acta Pharm Sin (药学学报), 2020, 55:1081-1090.
[6] Quinton LJ, Walkey AJ, Mizgerd JP. Integrative physiology of pneumonia[J]. Physiol Rev, 2018, 98:1417-1464.
[7] Mizgerd JP. Pathogenesis of severe pneumonia:advances and knowledge gaps[J]. Curr Opin Pulm Med, 2017, 23:193-197.
[8] Tan JY, Zhao F, Deng SX, et al. Glycyrrhizin affects monocyte migration and apoptosis by blocking HMGB1 signaling[J]. Mol Med Rep, 2018, 17:5970-5975.
[9] Wu CX, He LX, Guo H, et al. Inhibition effect of glycyrrhizin in lipopolysaccharide-induced high-mobility group box 1 releasing and expression from RAW264.7 cells[J]. Shock, 2015, 43:412-421.
[10] Fu J, Lin SH, Wang CJ, et al. HMGB1 regulates IL-33 expression in acute respiratory distress syndrome[J]. Int Immunopharmacol, 2016, 38:267-274.
[11] Le Y, Wang Y, Zhou L, et al. Cigarette smoke-induced HMGB1 translocation and release contribute to migration and NF-kappaB activation through inducing autophagy in lung macrophages[J]. J Cell Mol Med, 2020, 24:1319-1331.
[12] Ogiku M, Kono H, Hara M, et al. Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats[J]. J Pharmacol Exp Ther, 2011, 339:93-98.
[13] Lau A, Wang S, Liu W, et al. Glycyrrhizic acid ameliorates HMGB1-mediated cell death and inflammation after renal ischemia reperfusion injury[J]. Am J Nephrol, 2014, 40:84-95.
[14] Bangert A, Andrassy M, Muller AM, et al. Critical role of RAGE and HMGB1 in inflammatory heart disease[J]. Proc Natl Acad Sci U S A, 2016, 113:E155-E164.
[15] Vitali R, Palone F, Pierdomenico M, et al. Dipotassium glycyrrhizate via HMGB1 or AMPK signaling suppresses oxidative stress during intestinal inflammation[J]. Biochem Pharmacol, 2015, 97:292-299.
[16] Karin M. Nuclear factor-kappaB in cancer development and progression[J]. Nature, 2006, 441:431-436.
[17] Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls[J]. Nat Rev Drug Discov, 2009, 8:33-40.
[18] Inoue J, Gohda J, Akiyama T, et al. NF-kappaB activation in development and progression of cancer[J]. Cancer Sci, 2007, 98:268-274.
[19] Jimi E, Ghosh S. Role of nuclear factor-kappaB in the immune system and bone[J]. Immunol Rev, 2005, 208:80-87.
[20] Simmonds RE, Foxwell BM. Signalling, inflammation and arthritis:NF-kappaB and its relevance to arthritis and inflammation[J]. Rheumatology (Oxford), 2008, 47:584-590.
[21] Cohen J. The immunopathogenesis of sepsis[J]. Nature, 2002, 420:885-891.
[22] Zhao H, Zhao M, Wang Y, et al. Glycyrrhizic acid prevents sepsis-induced acute lung injury and mortality in rats[J]. J Histochem Cytochem, 2016, 64:125-137.
[23] Wang CY, Kao TC, Lo WH, et al. Glycyrrhizic acid and 18beta-glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF-kappaB through PI3K p110delta and p110gamma inhibitions[J]. J Agric Food Chem, 2011, 59:7726-7733.
[24] Yao L, Sun T. Glycyrrhizin administration ameliorates Streptococcus aureus-induced acute lung injury[J]. Int Immunopharmacol, 2019, 70:504-511.
[25] Lee SA, Lee SH, Kim JY, et al. Effects of glycyrrhizin on lipopolysaccharide-induced acute lung injury in a mouse model[J]. J Thorac Dis, 2019, 11:1287-1302.
[26] Tang HF, Mao LG, Jiang RA, et al. Protective effect against monoammonium glycyrrhizinate on lipopolysaccharide-induced acute lung injury in mice[J]. Acta Pharm Sin (药学学报), 2007, 9:954-958.
[27] Xie C, Li X, Zhu J, et al. Magnesium isoglycyrrhizinate suppresses LPS-induced inflammation and oxidative stress through inhibiting NF-kappaB and MAPK pathways in RAW264.7 cells[J]. Bioorg Med Chem, 2019, 27:516-524.
[28] Ishida T, Mizushina Y, Yagi S, et al. Inhibitory effects of glycyrrhetinic acid on DNA polymerase and inflammatory activities[J]. Evid Based Complement Alternat Med, 2012, 2012:650514.
[29] Mao Y, Wang B, Xu X, et al. Glycyrrhizic acid promotes M1 macrophage polarization in murine bone marrow-derived macrophages associated with the activation of JNK and NF-kappaB[J]. Mediators Inflamm, 2015, 2015:372931.
[30] Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system[J]. Int J Biol Sci, 2012, 8:1254-1266.
[31] Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease[J]. Crit Rev Immunol, 2012, 32:23-63.
[32] Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development[J]. Oncogene, 1999, 18:7908-7916.
[33] Liu W, Huang S, Li Y, et al. Synergistic effect of tolfenamic acid and glycyrrhizic acid on TPA-induced skin inflammation in mice[J]. Medchemcomm, 2019, 10:1819-1827.
[34] Chen X, Fang D, Li L, et al. Glycyrrhizin ameliorates experimental colitis through attenuating interleukin-17-producing T cell responses via regulating antigen-presenting cells[J]. Immunol Res, 2017, 65:666-680.
[35] Kim YM, Kim HJ, Chang KC. Glycyrrhizin reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and endotoxemic mice by p38/Nrf2-dependent induction of HO-1[J]. Int Immunopharmacol, 2015, 26:112-118.
[36] Park JM, Park SH, Hong KS, et al. Special licorice extracts containing lowered glycyrrhizin and enhanced licochalcone A prevented Helicobacter pylori-initiated, salt diet-promoted gastric tumorigenesis[J]. Helicobacter, 2014, 19:221-236.
[37] Ojha S, Javed H, Azimullah S, et al. Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of Parkinson's disease[J]. Neurotox Res, 2016, 29:275-287.
[38] Balkwill F. Tumor necrosis factor or tumor promoting factor?[J]. Cytokine Growth Factor Rev, 2002, 13:135-141.
[39] Xu X, Gong L, Wang B, et al. Glycyrrhizin attenuates Salmonella enterica serovar Typhimurium infection:new insights into its protective mechanism[J]. Front Immunol, 2018, 9:2321.
[40] Gonzalez-Reyes S, Santillan-Cigales JJ, Jimenez-Osorio AS, et al. Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats[J]. Epilepsy Res, 2016, 126:126-133.
[41] Barakat W, Safwet N, El-Maraghy NN, et al. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade[J]. Eur J Pharmacol, 2014, 724:43-50.
[42] Akman T, Guven M, Aras AB, et al. The neuroprotective effect of glycyrrhizic acid on an experimental model of focal cerebral ischemia in rats[J]. Inflammation, 2015, 38:1581-1588.
[43] Matsuo K, Takenaka K, Shimomura H, et al. Lamivudine and glycyrrhizin for treatment of chemotherapy-induced hepatitis B virus (HBV) hepatitis in a chronic HBV carrier with non-Hodgkin lymphoma[J]. Leuk Lymphoma, 2001, 41:191-195.
[44] Ashfaq UA, Masoud MS, Nawaz Z, et al. Glycyrrhizin as antiviral agent against hepatitis C virus[J]. J Transl Med, 2011, 9:112.
[45] Orlent H, Hansen BE, Willems M, et al. Biochemical and histological effects of 26 weeks of glycyrrhizin treatment in chronic hepatitis C:a randomized phase II trial[J]. J Hepatol, 2006, 45:539-546.
[46] Harada S. The broad anti-viral agent glycyrrhizin directly modulates the fluidity of plasma membrane and HIV-1 envelope[J]. Biochem J, 2005, 392:191-199.
[47] Mori K, Sakai H, Suzuki S, et al. Effects of glycyrrhizin (SNMC:stronger Neo-Minophagen C) in hemophilia patients with HIV infection[J]. Tohoku J Exp Med, 1989, 158:25-35.
[48] Feng Yeh C, Wang KC, Chiang LC, et al. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines[J]. J Ethnopharmacol, 2013, 148:466-473.
[49] Huan CC, Wang HX, Sheng XX, et al. Glycyrrhizin inhibits porcine epidemic diarrhea virus infection and attenuates the proinflammatory responses by inhibition of high mobility group box-1 protein[J]. Arch Virol, 2017, 162:1467-1476.
[50] Duan E, Wang D, Fang L, et al. Suppression of porcine reproductive and respiratory syndrome virus proliferation by glycyrrhizin[J]. Antiviral Res, 2015, 120:122-125.
[51] Wolkerstorfer A, Kurz H, Bachhofner N, et al. Glycyrrhizin inhibits influenza A virus uptake into the cell[J]. Antiviral Res, 2009, 83:171-178.
[52] Wang ZW, Sun N, Wu CH, et al. In vitro antiviral activity and underlying molecular mechanisms of dipotassium glycyrrhetate against porcine reproductive and respiratory syndrome virus[J]. Antivir Ther, 2013, 18:997-1004.
[53] Sun Y, Song M, Niu L, et al. Antiviral effects of the constituents derived from Chinese herb medicines on infectious bursal disease virus[J]. Pharm Biol, 2013, 51:1137-1143.
[54] Sun Y, Niu L, Song M, et al. Screening compounds of Chinese medicinal herbs anti-Marek's disease virus[J]. Pharm Biol, 2014, 52:841-847.
[55] Cohen JI. Licking latency with licorice[J]. J Clin Invest, 2005, 115:591-593.
[56] Curreli F, Friedman-Kien AE, Flore O. Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes[J]. J Clin Invest, 2005, 115:642-652.
[57] Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds[J]. J Clin Virol, 2004, 31:69-75.
[58] Liu AL, Du GH. Drug discovery for COVID-19 treatment based on drug targets[J]. Acta Pharm Sin (药学学报), 2020, 55:1073-1080.
[59] Liu QY, Wang XL. Strategies for the development of drugs targeting novel coronavirus 2019-nCoV[J]. Acta Pharm Sin (药学学报), 2020, 55:181-188.
[60] Yu S, Zhu Y, Xu J, et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2[J]. Phytomedicine, 2020, 2:153364.
[61] Vankadari N, Jeyasankar NN, Lopes WJ. Structure of the SARS-CoV-2 Nsp1/5'-untranslated region complex and implications for potential therapeutic targets, a vaccine, and virulence[J]. J Phys Chem Lett, 2020, 11:9659-9668.
[62] Bailly C, Vergoten G. Glycyrrhizin:an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?[J]. Pharmacol Ther, 2020, 214:107618.
相关文献:
1.刘千勇, 王晓良.新型冠状病毒(2019-nCoV)的靶向药物研究策略[J]. 药学学报, 2020,55(2): 181-188
2.潘露露, 钟大放.抗新型冠状病毒肺炎(COVID-19)药物的代谢和药动学[J]. 药学学报, 2020,55(11): 2570-2579
3.张超, 陈姝冰, 张洁, 郭颖.浅析注册用于新冠肺炎治疗的临床试验药物[J]. 药学学报, 2020,55(3): 355-365
4.孙静, 赵荣华, 郭姗姗, 时宇静, 包蕾, 耿子涵, 高英杰, 刘建, 李琼, 崔晓兰.苦参碱氯化钠注射液对人冠状病毒肺炎寒湿疫毒袭肺证小鼠病证结合模型的治疗作用[J]. 药学学报, 2020,55(3): 366-373
5.吴昊, 王佳琪, 杨雨薇, 李天怡, 曹一佳, 曲玉霞, 靳玉洁, 张晨宁, 孙毅坤.基于网络药理学和分子对接技术初步探索“清肺排毒汤”抗新型冠状病毒肺炎作用机制[J]. 药学学报, 2020,55(3): 374-383
6.杨璐, 王辉强, 李玉环.COVID-19治疗药物的研究进展[J]. 药学学报, 2020,55(6): 1081-1090
7.宗阳, 姚卫峰, 居文政.基于细胞因子风暴和中医“湿毒犯肺”理论挖掘抗新型冠状病毒肺炎中药[J]. 药学学报, 2020,55(6): 1091-1097