药学学报, 2021, 56(5): 1217-1228
引用本文:
王子见, 李子恒, 常亦昆, 张甜, 任媛媛, 何凤琴. 核质转运异常与神经退行性疾病[J]. 药学学报, 2021, 56(5): 1217-1228.
WANG Zi-jian, LI Zi-heng, CHANG Yi-kun, ZHANG Tian, REN Yuan-yuan, HE Feng-qin. Nucleocytoplasmic transport and neurodegenerative diseases[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1217-1228.

核质转运异常与神经退行性疾病
王子见1*#, 李子恒1#, 常亦昆2, 张甜1, 任媛媛1, 何凤琴1
1. 西安文理学院, 西安市秦岭天然产物开发与创新药物研究重点实验室, 陕西 西安 710065;
2. 郑州大学医学院, 河南 郑州 450052
摘要:
核质转运过程作为真核细胞的基本生命活动之一,对细胞生理和病理过程都至关重要。大量证据表明,核质转运异常是神经退行性疾病的关键致病因素,而核质转运障碍的调控机制对于阐明神经退行性疾病的发病机制和干预治疗至关重要。本文搜集20年来核质转运异常在神经退行性疾病发病机制中的相关研究,综述在肌萎缩脊髓侧索硬化症/前额颞叶痴呆、亨廷顿舞蹈症和脊髓小脑共济失调等神经退行性疾病中的核质转运现象和涉及的调控机制,进一步探讨在目前研究中存在的问题并提出建议,为神经退行性疾病的致病机制和药物靶标研究提供理论依据。
关键词:    核质转运      神经退行性疾病      致病机制      药物靶标     
Nucleocytoplasmic transport and neurodegenerative diseases
WANG Zi-jian1*#, LI Zi-heng1#, CHANG Yi-kun2, ZHANG Tian1, REN Yuan-yuan1, HE Feng-qin1
1. Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an University, Xi'an 710065, China;
2. College of Medicine, Zhengzhou University, Zhengzhou 450052, China
Abstract:
Nucleocytoplasmic transport is the basic cellular activity of eukaryotic cells, which plays a role in cell physiological and pathological processes. A large amount of evidences indicate that impaired nucleocytoplasmic trafficking has emerged as a mechanism contributing to the pathology of neurodegenerative diseases. The regulation of nucleocytoplasmic transport is crucial to elucidate the pathogenesis and intervention in the neurodegenerative diseases. This article summarizes the evidences in disturbed nucleocytoplasmic transport of neurodegenerative diseases in the past two decades, further explores the directions and provides a theoretical basis for the pathogenesis and drug targets in neurodegenerative diseases.
Key words:    nucleocytoplasmic transport    neurodegenerative disease    pathogenesis    drug target   
收稿日期: 2020-11-23
DOI: 10.16438/j.0513-4870.2020-1796
基金项目: 陕西省自然科学基础研究计划资助项目(2020JM-620);西安市科技计划创新基金“文理专项”项目(2020KJWL04);西安文理学院博士启动金(06005026);国家级大学生创新创业项目(S202011080012,201911080013);省级大学生创新创业项目(S202011080058).
通讯作者: 王子见,Tel:86-29-88275947,E-mail:wangzijian-136@163.com
Email: wangzijian-136@163.com
相关功能
PDF(1241KB) Free
打印本文
0
作者相关文章
王子见  在本刊中的所有文章
李子恒  在本刊中的所有文章
常亦昆  在本刊中的所有文章
张甜  在本刊中的所有文章
任媛媛  在本刊中的所有文章
何凤琴  在本刊中的所有文章

参考文献:
[1] Fahrenkrog B, Harel A. Perturbations in traffic:aberrant nucleocytoplasmic transport at the heart of neurodegeneration[J]. Cells, 2018, 7:232.
[2] Liu ZL, Li XY, Zhang Q, et al. Establishment and application of a screening anti-HIV-1 drug model targeted nuclear trafficking of virus RNA[J]. Acta Pharm Sin (药学学报), 2010, 45:257-262.
[3] Benarroch EE. Nucleocytoplasmic transport:mechanisms and involvement in neurodegenerative disease[J]. Neurology, 2019, 92:757-764.
[4] Kim HJ, Taylor JP. Lost in transportation:nucleocytoplasmic transport defects in ALS and other neurodegenerative diseases[J]. Neuron, 2017, 96:285-297.
[5] Xiong JM, Cui F. Progress in nucleocytoplasmic transport in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia[J]. J Neurol Neurorehabil (神经病学与神经康复学杂志), 2018, 3:167-171.
[6] Moore S, Rabichow BE, Sattler R. The Hitchhiker's guide to nucleocytoplasmic trafficking in neurodegeneration[J]. Neurochem Res, 2020, 45:1306-1327.
[7] Guo JL, Xu CX. Research progress of structure and function of importin[J]. Chin J Cell Biol (中国细胞生物学学报), 2015, 37:1013-1020.
[8] Li N, Lagier-Tourenne C. Nuclear pores:the gate to neurodegeneration[J]. Nat Neurosci, 2018, 21:156-158.
[9] Wente SR, Rout MP. The nuclear pore complex and nuclear transport[J]. Cold Spring Harb Perspect Biol, 2010, 2:a000562.
[10] Peng JS, Gong JM. The mechanisms of protein sorting and translocation regulated by signal peptides[J]. Plant Physiol J (植物生理学报), 2011, 47:9-17.
[11] Cheng G, Hu WX. Nuclear transport receptor--importin α and nucleocytoplasmic transport[J]. Chem Life (生命的化学), 2010, 30:504-508.
[12] Dolgin E. The brain's traffic problems[J]. Science, 2019, 363:221-223.
[13] Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis:insights from pathophysiological studies[J]. Trends Neurosci, 2014, 37:433-442.
[14] Taylor JP, Brown RH, Cleveland DW. Decoding ALS:from genes to mechanism[J]. Nature, 2016, 539:197-206.
[15] Gijselinck I, Van Langenhove T, van der Zee J, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum:a gene identification study[J]. Lancet Neurol, 2012, 11:54-65.
[16] DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9orf72 causes chromosome 9p-linked FTD and ALS[J]. Neuron, 2011, 72:245-256.
[17] Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2014, 10:661-670.
[18] Lomen-Hoerth C, Anderson T, Miller B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia[J]. Neurology, 2002, 59:1077-1079.
[19] Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration[J]. Transl Neurodegener, 2020, 9:25.
[20] Zhang K, Donnelly CJ, Haeusler AR, et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport[J]. Nature, 2015, 525:56-61.
[21] Jovičić A, Mertens J, Boeynaems S, et al. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS[J]. Nat Neurosci, 2015, 18:1226-1229.
[22] Boeynaems S, Bogaert E, Van Damme P, et al. Inside out:the role of nucleocytoplasmic transport in ALS and FTLD[J]. Acta Neuropathol, 2016, 132:159-173.
[23] Solomon DA, Stepto A, Au WH, et al. A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-alpha mediates C9orf72-related neurodegeneration[J]. Brain, 2018, 141:2908-2924.
[24] Freibaum BD, Lu Y, Lopez-Gonzalez R, et al. GGGGCC repeat expansion in C9orf72 compromises nucleocytoplasmic transport[J]. Nature, 2015, 525:129-133.
[25] Nousiainen HO, Kestilä M, Pakkasjärvi N, et al. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease[J]. Nat Genet, 2008, 40:155-157.
[26] Kaneb HM, Folkmann AW, Belzil VV, et al. Deleterious mutations in the essential mRNA metabolism factor, hGle1, in amyotrophic lateral sclerosis[J]. Hum Mol Genet, 2015, 24:1363-1373.
[27] Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, et al. Polyglutamine-expanded huntingtin exacerbates age-related disruption of nuclear integrity and nucleocytoplasmic transport[J]. Neuron, 2017, 94:48-57.e4.
[28] Renton AE, Majounie E, Waite A, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD[J]. Neuron, 2011, 72:257-268.
[29] Shang J, Yamashita T, Nakano Y, et al. Aberrant distributions of nuclear pore complex proteins in ALS mice and ALS patients[J]. Neuroscience, 2017, 350:158-168.
[30] Kinoshita Y, Ito H, Hirano A, et al. Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis[J]. J Neuropathol Exp Neurol, 2009, 68:1184-1192.
[31] Coyne AN, Zaepfel BL, Hayes L, et al. G4C2 repeat RNA initiates a POM121-mediated reduction in specific nucleoporins in C9orf72 ALS/FTD[J]. Neuron, 2020, 107:1124-1140.e11.
[32] Zhang YJ, Gendron TF, Grima JC, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins[J]. Nat Neurosci, 2016, 19:668-677.
[33] Shi KY, Mori E, Nizami ZF, et al. Toxic PRn poly-dipeptides encoded by the C9orf72 repeat expansion block nuclear import and export[J]. Proc Natl Acad Sci U S A, 2017, 114:E1111-E1117.
[34] Lee KH, Zhang P, Kim HJ, et al. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membraneless organelles[J]. Cell, 2016, 167:774-788.
[35] Lin Y, Mori E, Kato M, et al. Toxic PR poly-dipeptides encoded by the C9orf72 repeat expansion target LC domain polymers[J]. Cell, 2016, 167:789-802.
[36] Khosravi B, Hartmann H, May S, et al. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD[J]. Hum Mol Genet, 2017, 26:790-800.
[37] Hayes LR, Duan L, Bowen K, et al. C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import[J]. Elife, 2020, 9:e51685.
[38] Saberi S, Stauffer JE, Jiang J, et al. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis[J]. Acta Neuropathol, 2018, 135:459-474.
[39] Zhang K, Daigle JG, Cunningham KM, et al. Stress granule assembly disrupts nucleocytoplasmic transport[J]. Cell, 2018, 173:958-971.e17.
[40] Zhang YJ, Gendron TF, Ebbert MTW, et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis[J]. Nat Med, 2018, 24:1136-1142.
[41] Vanneste J, Vercruysse T, Boeynaems S, et al. C9orf72-generated poly-GR and poly-PR do not directly interfere with nucleocytoplasmic transport[J]. Sci Rep, 2019, 9:15728.
[42] Birsa N, Bentham MP, Fratta P. Cytoplasmic functions of TDP-43 and FUS and their role in ALS[J]. Semin Cell Dev Biol, 2020, 9:193-201.
[43] Neumann M, Sampathu DM, Kwong LK, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Science, 2006, 314:130.
[44] Weskamp K, Barmada SJ. TDP43 and RNA instability in amyotrophic lateral sclerosis[J]. Brain Res, 2018, 1693:67-74.
[45] Svahn AJ, Don EK, Badrock AP, et al. Nucleo-cytoplasmic transport of TDP-43 studied in real time:impaired microglia function leads to axonal spreading of TDP-43 in degenerating motor neurons[J]. Acta Neuropathol, 2018, 136:445-459.
[46] Nakashima-Yasuda H, Uryu K, Robinson J, et al. Co-morbidity of TDP-43 proteinopathy in Lewy body related diseases[J]. Acta Neuropathol, 2007, 114:221-229.
[47] Uryu K, Nakashima-Yasuda H, Forman MS, et al. Concomitant TAR-DNA-binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies[J]. J Neuropathol Exp Neurol, 2008, 67:555-564.
[48] Wilson AC, Dugger BN, Dickson DW, et al. TDP-43 in aging and Alzheimer's disease-a review[J]. Int J Clin Exp Pathol, 2011, 4:147-155.
[49] Chou CC, Zhang Y, Umoh ME, et al. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD[J]. Nat Neurosci, 2018, 21:228-239.
[50] Heyburn L, VSSS Sajja, Long JB. The role of TDP-43 in military-relevant TBI and chronic neurodegeneration[J]. Front Neurol, 2019, 10:680.
[51] Smith C, Malek N, Grosset K, et al. Neuropathology of dementia in patients with Parkinson's disease:a systematic review of autopsy studies[J]. J Neurol Neurosurg Psychiatry, 2019, 90:1234-1243.
[52] Matej R, Tesar A, Rusina R. Alzheimer's disease and other neurodegenerative dementias in comorbidity:a clinical and neuropathological overview[J]. Clin Biochem, 2019, 73:26-31.
[53] Nishimura AL, Zupunski V, Troakes C, et al. Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration[J]. Brain, 2010, 133:1763-1771.
[54] Winton MJ, Igaz LM, Wong MM, et al. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation[J]. J Biol Chem, 2008, 283:13302-13309.
[55] Boeynaems S, Bogaert E, Michiels E, et al. Drosophila screen connects nuclear transport genes to DPR pathology in c9ALS/FTD[J]. Sci Rep, 2016, 6:20877.
[56] Zhang YJ, Xu YF, Cook C, et al. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity[J]. Proc Natl Acad Sci U S A, 2009, 106:7607-7612.
[57] Pinarbasi ES, Cağatay T, Fung HYJ, et al. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization[J]. Sci Rep, 2018, 8:7083.
[58] Archbold HC, Jackson KL, Arora A, et al. TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia[J]. Sci Rep, 2018, 8:4606.
[59] Ederle H, Funk C, Abou-Ajram C, et al. Nuclear egress of TDP-43 and FUS occurs independently of exportin-1/CRM1[J]. Sci Rep, 2018, 8:7084.
[60] Gasset-Rosa F, Lu S, Yu H, et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death[J]. Neuron, 2019, 102:339-357.e7.
[61] Prpar Mihevc S, Darovic S, Kovanda A, et al. Nuclear trafficking in amyotrophic lateral sclerosis and frontotemporal lobar degeneration[J]. Brain, 2017, 140:13-26.
[62] Woerner AC, Frottin F, Hornburg D, et al. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA[J]. Science, 2016, 351:173-176.
[63] Maurel C, Chami AA, Thépault RA, et al. A role for SUMOylation in the formation and cellular localization of TDP-43 aggregates in amyotrophic lateral sclerosis[J]. Mol Neurobiol, 2020, 57:1361-1373.
[64] Dormann D, Rodde R, Edbauer D, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import[J]. EMBO J, 2010, 29:2841-2857.
[65] Hofweber M, Hutten S, Bourgeois B, et al. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation[J]. Cell, 2018, 173:706-719.
[66] Neumann M, Valori CF, Ansorge O, et al. Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations[J]. Acta Neuropathol, 2012, 124:705-716.
[67] Takeuchi R, Toyoshima Y, Tada M, et al. Transportin 1 accumulates in FUS inclusions in adult-onset ALS without FUS mutation[J]. Neuropathol Appl Neurobiol, 2013, 39:580-584.
[68] Yoshizawa T, Ali R, Jiou J, et al. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites[J]. Cell, 2018, 173:693-705.e22.
[69] Devoy A, Kalmar B, Stewart M, et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in ‘FUSDelta14’ knockin mice[J]. Brain, 2017, 140:2797-2805.
[70] Scekic-Zahirovic J, Oussini HE, Mersmann S, et al. Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis[J]. Acta Neuropathol, 2017, 133:887-906.
[71] Dormann D, Madl T, Valori CF, et al. Arginine methylation next to the PY-NLS modulates transportin binding and nuclear import of FUS[J]. EMBO J, 2012, 31:4258-4275.
[72] Suárez-Calvet M, Neumann M, Arzberger T, et al. Monomethylated and unmethylated FUS exhibit increased binding to transportin and distinguish FTLD-FUS from ALS-FUS[J]. Acta Neuropathol, 2016, 131:587-604.
[73] Darovic S, Prpar Mihevc S, Župunski V, et al. Phosphorylation of C-terminal tyrosine residue 526 in FUS impairs its nuclear import[J]. J Cell Sci, 2015, 128:4151-4159.
[74] Steyaert J, Scheveneels W, Vanneste J, et al. FUS-induced neurotoxicity in Drosophila is prevented by downregulating nucleocytoplasmic transport proteins[J]. Hum Mol Genet, 2018, 27:4103-4116.
[75] Bessert DA, Gutridge KL, Dunbar JC, et al. The identification of a functional nuclear localization signal in the Huntington disease protein[J]. Brain Res Mol Brain Res, 1995, 33:165-173.
[76] Desmond CR, Atwal RS, Xia J, et al. Identification of a karyopherin β1/β2 proline-tyrosine nuclear localization signal in huntingtin protein[J]. J Biol Chem, 2012, 287:39626-39633.
[77] Xia J, Lee DH, Taylor J, et al. Huntingtin contains a highly conserved nuclear export signal[J]. Hum Mol Genet, 2003, 12:1393-1403.
[78] Maiuri T, Woloshansky T, Xia J, et al. The huntingtin N17 domain is a multifunctional CRM1 and Ran-dependent nuclear and cilial export signal[J]. Hum Mol Genet, 2013, 22:1383-1394.
[79] Zheng Z, Li A, Holmes BB, et al. An N-terminal nuclear export signal regulates trafficking and aggregation of Huntingtin (Htt) protein exon 1[J]. J Biol Chem, 2013, 288:6063-6071.
[80] Yan Y, Peng D, Tian J, et al. Essential sequence of the N-terminal cytoplasmic localization-related domain of huntingtin and its effect on huntingtin aggregates[J]. Sci China Life Sci, 2011, 54:342-350.
[81] Son S, Bowie LE, Maiuri T, et al. High-mobility group box 1 links sensing of reactive oxygen species by huntingtin to its nuclear entry[J]. J Biol Chem, 2019, 294:1915-1923.
[82] Gu X, Greiner ER, Mishra R, et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice[J]. Neuron, 2009, 64:828-840.
[83] Thompson LM, Aiken CT, Kaltenbach LS, et al. IKK phosphorylates huntingtin and targets it for degradation by the proteasome and lysosome[J]. J Cell Biol, 2009, 187:1083-1099.
[84] Atwal RS, Desmond CR, Caron N, et al. Kinase inhibitors modulate huntingtin cell localization and toxicity[J]. Nat Chem Biol, 2011, 7:453-460.
[85] Havel LS, Wang CE, Wade B, et al. Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation[J]. Hum Mol Genet, 2011, 20:1424-1437.
[86] DeGuire SM, Ruggeri FS, Fares MB, et al. N-terminal Huntingtin (Htt) phosphorylation is a molecular switch regulating Htt aggregation, helical conformation, internalization, and nuclear targeting[J]. J Biol Chem, 2018, 293:18540-18558.
[87] Grima JC, Daigle JG, Arbez N, et al. Mutant Huntingtin disrupts the nuclear pore complex[J]. Neuron, 2017, 94:93-107.e6.
[88] Veldman MB, Yang XW. Huntington's disease:nuclear gatekeepers under attack[J]. Neuron, 2017, 94:1-4.
[89] Hosp F, Vossfeldt H, Heinig M, et al. Quantitative interaction proteomics of neurodegenerative disease proteins[J]. Cell Rep, 2015, 11:1134-1146.
[90] Bui KH, von Appen A, DiGuilio AL, et al. Integrated structural analysis of the human nuclear pore complex scaffold[J]. Cell, 2013, 155:1233-1243.
[91] Lussi YC, Hügi I, Laurell E, et al. The nucleoporin Nup88 is interacting with nuclear lamin A[J]. Mol Biol Cell, 2011, 22:1080-1090.
[92] Truant R, Atwal RS, Burtnik A. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington's disease[J]. Prog Neurobiol, 2007, 83:211-227.
[93] Cornett J, Cao F, Wang CE, et al. Polyglutamine expansion of huntingtin impairs its nuclear export[J]. Nat Genet, 2005, 37:198-204.
[94] Bañez-Coronel M, Ayhan F, Tarabochia AD, et al. RAN translation in Huntington disease[J]. Neuron, 2015, 88:667-677.
[95] Di Pardo A, Monyror J, Morales LC, et al. Mutant huntingtin interacts with the sterol regulatory element-binding proteins and impairs their nuclear import[J]. Hum Mol Genet, 2020, 29:418-431.
[96] Zheng J, Yang J, Choe YJ, et al. Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded huntingtin exon-1[J]. Biochem Biophys Res Commun, 2017, 493:708-717.
[97] Li T, Hou X, Chen Z, et al. RNA expression profile and potential biomarkers in patients with spinocerebellar ataxia type 3 from mainland China[J]. Front Genet, 2019, 10:566.
[98] Chen Z, Wang P, Wang C, et al. Updated frequency analysis of spinocerebellar ataxia in China[J]. Brain, 2018, 141:e22.
[99] Saute JA, Jardim LB. Machado Joseph disease:clinical and genetic aspects, and current treatment[J]. Expert Opin Orphan Drugs, 2015, 3:1-19.
[100] Matos CA, de Almeida LP, Nóbrega C. Machado-Joseph disease/spinocerebellar ataxia type 3:lessons from disease pathogenesis and clues into therapy[J]. J Neurochem, 2019, 148:8-28.
[101] Wang ZJ. Experimental and clinical strategies for treating spinocerebellar ataxia type 3[J]. Neuroscience, 2018, 371:138-154.
[102] McLoughlin HS, Moore LR, Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases[J]. Neurobiol Dis, 2020, 134:104635.
[103] Schmidt T, Landwehrmeyer GB, Schmitt I, et al. An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients[J]. Brain Pathol, 1998, 8:669-679.
[104] Warrick JM, Paulson HL, Gray-Board GL, et al. Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila[J]. Cell, 1998, 93:939-949.
[105] Da Silva JD, Teixeira-Castro A, Maciel P. From pathogenesis to novel therapeutics for spinocerebellar ataxia type 3:evading potholes on the way to translation[J]. Neurotherapeutics, 2019, 16:1009-1031.
[106] Antony PM, Mäntele S, Mollenkopf P, et al. Identification and functional dissection of localization signals within ataxin-3[J]. Neurobiol Dis, 2009, 36:280-292.
[107] Macedo-Ribeiro S, Cortes L, Maciel P, et al. Nucleocytoplasmic shuttling activity of ataxin-3[J]. PLoS One, 2009, 4:e5834.
[108] Sowa AS, Martin E, Martins IM, et al. Karyopherin α-3 is a key protein in the pathogenesis of spinocerebellar ataxia type 3 controlling the nuclear localization of ataxin-3[J]. Proc Natl Acad Sci U S A, 2018, 115:E2624-E2633.
[109] Bichelmeier U, Schmidt T, Hübener J, et al. Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3:in vivo evidence[J]. J Neurosci, 2007, 27:7418-7428.
[110] Todi SV, Scaglione KM, Blount JR, et al. Activity and cellular functions of the deubiquitinating enzyme and polyglutamine disease protein ataxin-3 are regulated by ubiquitination at lysine 117[J]. J Biol Chem, 2010, 285:39303-39313.
[111] Matos CA, Nóbrega C, Louros SR, et al. Ataxin-3 phosphorylation decreases neuronal defects in spinocerebellar ataxia type 3 models[J]. J Cell Biol, 2016, 212:465-480.
[112] Hübener J, Weber JJ, Richter C, et al. Calpain-mediated ataxin-3 cleavage in the molecular pathogenesis of spinocerebellar ataxia type 3(SCA3)[J]. Hum Mol Genet, 2013, 22:508-518.
[113] Simões AT, Gonçalves N, Nobre RJ, et al. Calpain inhibition reduces ataxin-3 cleavage alleviating neuropathology and motor impairments in mouse models of Machado-Joseph disease[J]. Hum Mol Genet, 2014, 23:4932-4944.
[114] Weber JJ, Golla M, Guaitoli G, et al. A combinatorial approach to identify calpain cleavage sites in the Machado-Joseph disease protein ataxin-3[J]. Brain, 2017, 140:1280-1299.
[115] Weber JJ, Haas E, Maringer Y, et al. Calpain-1 ablation partially rescues disease-associated hallmarks in models of Machado-Joseph disease[J]. Hum Mol Genet, 2020, 29:892-906.
[116] Reina CP, Zhong X, Pittman RN. Proteotoxic stress increases nuclear localization of ataxin-3[J]. Hum Mol Genet, 2010, 19:235-249.
[117] Robijns J, Houthaeve G, Braeckmans K, et al. Loss of nuclear envelope integrity in aging and disease[J]. Int Rev Cell Mol Biol, 2018, 336:205-222.
[118] Wang Z. Disulfiram facilitates ataxin-3 nuclear translocation and potentiates the cytotoxicity in a cell model of SCA3[J]. J Toxicol Sci, 2019, 44:535-542.
[119] Wang Z, He F, Abeditashi M, et al. Divalproex sodium regulates ataxin-3 translocation likely by an importin α1-dependent pathway[J]. Neuroreport, 2019, 30:760-764.
[120] Wang ZJ, Hanet A, Weishäupl D, et al. Divalproex sodium modulates nuclear localization of ataxin-3 and prevents cellular toxicity caused by expanded ataxin-3[J]. CNS Neurosci Ther, 2018, 24:404-411.
[121] Eftekharzadeh B, Daigle JG, Kapinos LE, et al. Tau protein disrupts nucleocytoplasmic transport in Alzheimer's disease[J]. Neuron, 2018, 99:925-940.e7.
[122] Mastroeni D, Chouliaras L, Grover A, et al. Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer's disease pathophysiology[J]. PLoS One, 2013, 8:e53349.
[123] Lee BJ, Cansizoglu AE, Süel KE, et al. Rules for nuclear localization sequence recognition by karyopherin beta 2[J]. Cell, 2006, 126:543-558.
[124] Sheffield LG, Miskiewicz HB, Tannenbaum LB, et al. Nuclear pore complex proteins in Alzheimer disease[J]. J Neuropathol Exp Neurol, 2006, 65:45-54.
[125] Katsuno M, Tanaka F, Adachi H, et al. Pathogenesis and therapy of spinal and bulbar muscular atrophy (SBMA)[J]. Prog Neurobiol, 2012, 99:246-256.
[126] Montie HL, Cho MS, Holder L, et al. Cytoplasmic retention of polyglutamine-expanded androgen receptor ameliorates disease via autophagy in a mouse model of spinal and bulbar muscular atrophy[J]. Hum Mol Genet, 2009, 18:1937-1950.
[127] Arnold FJ, Pluciennik A, Merry DE. Impaired nuclear export of polyglutamine-expanded androgen receptor in spinal and bulbar muscular atrophy[J]. Sci Rep, 2019, 9:119.
[128] Biogen.A Study to Evaluate the Safety,Tolerability,Pharmacokinetics, and Pharmacodynamics of BIIB100 Administered Orally to Adults with Amyotrophic Lateral Sclerosis[R]. Cambridge:Biogen, 2019. https://clinicaltrials.gov/ct2/show/NCT03945279.
[129] Lester E, Parker R. The tau of nuclear-cytoplasmic transport[J]. Neuron, 2018, 99:869-871.
[130] Hutten S, Dormann D. Nucleocytoplasmic transport defects in neurodegeneration-cause or consequence?[J]. Semin Cell Dev Biol, 2020, 9:151-162.