药学学报, 2021, 56(5): 1246-1252
引用本文:
甘珮荣, 刘超, 吴虹, 董心同, 柯江涛, 陈芳园. HIF-VEGF-Ang-2信号转导介导的滑膜血管新生在类风湿关节炎中的作用[J]. 药学学报, 2021, 56(5): 1246-1252.
GAN Pei-rong, LIU Chao, WU Hong, DONG Xin-tong, KE Jiang-tao, CHEN Fang-yuan. The role of HIF-VEGF-Ang-2 signal transduction-mediated synovial angiogenesis in rheumatoid arthritis[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1246-1252.

HIF-VEGF-Ang-2信号转导介导的滑膜血管新生在类风湿关节炎中的作用
甘珮荣1, 刘超2, 吴虹1*, 董心同1, 柯江涛1, 陈芳园1
1. 安徽中医药大学药学院, 新安医学教育部重点实验室, 中药研究与开发安徽省重点实验室, 安徽 合肥 230012;
2. 安徽医科大学基础医学院, 安徽 合肥 230032
摘要:
类风湿关节炎(rheumatoid arthritis,RA)是一种以血管新生、炎性因子浸润和关节破坏为主要病理特征的自身免疫性疾病。血管新生推动RA的发展,在其发病机制中发挥重要作用。HIF(hypoxia-inducible factor)-VEGF(vascular endothelial growth factor)-Ang-2(angiopoietin-2)信号转导是诱导滑膜血管新生的关键途径。靶向HIF-VEGF-Ang-2信号转导抑制滑膜血管新生是一种有前景的RA治疗方法。本文对HIF-VEGF-Ang-2信号转导介导的滑膜血管新生在RA中的作用和机制进行综述,以期为RA的治疗提供新的靶点和策略。
关键词:    类风湿关节炎      血管新生      缺氧诱导因子      血管内皮生长因子      血管生成素-2     
The role of HIF-VEGF-Ang-2 signal transduction-mediated synovial angiogenesis in rheumatoid arthritis
GAN Pei-rong1, LIU Chao2, WU Hong1*, DONG Xin-tong1, KE Jiang-tao1, CHEN Fang-yuan1
1. Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Key Lab of Xin'an Medicine, Ministry of Education, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China;
2. School of Basic Medicine, Anhui Medical University, Hefei 230032, China
Abstract:
Rheumatoid arthritis (RA) is an autoimmune disease with angiogenesis, inflammatory factor infiltration and joint destruction as the main pathological features. Angiogenesis promotes the development of RA and plays an important role in its pathogenesis. The hypoxia-inducible factor (HIF)-vascular endothelial growth factor (VEGF)-angiopoietin-2 (Ang-2) signal transduction is a critical pathway to induce synovial angiogenesis. Targeting HIF-VEGF-Ang-2 signal transduction to inhibit synovial angiogenesis is a promising approach for RA treatment. This article reviews the role and mechanism of HIF-VEGF-Ang-2 signal transduction-mediated synovial angiogenesis in RA, in order to provide a new target and strategy for RA treatment.
Key words:    rheumatoid arthritis    angiogenesis    hypoxia-inducible factor    vascular endothelial growth factor    angiopoietin-2   
收稿日期: 2021-02-19
DOI: 10.16438/j.0513-4870.2021-0238
基金项目: 国家科学自然基金资助项目(81874360,81473400,81073122).
通讯作者: 吴虹,Tel:13485606565,E-mail:wuhongprof@aliyun.com
Email: wuhongprof@aliyun.com
相关功能
PDF(762KB) Free
打印本文
0
作者相关文章
甘珮荣  在本刊中的所有文章
刘超  在本刊中的所有文章
吴虹  在本刊中的所有文章
董心同  在本刊中的所有文章
柯江涛  在本刊中的所有文章
陈芳园  在本刊中的所有文章

参考文献:
[1] Ross CL, Ang DC, Almeida-Porada G. Targeting mesenchymal stromal cells/pericytes (MSCs) with pulsed electromagnetic field (PEMF) has the potential to treat rheumatoid arthritis[J]. Front Immunol, 2019, 10:266.
[2] Balogh E, Biniecka M, Fearon U, et al. Angiogenesis in inflammatory arthritis[J]. Isr Med Assoc J, 2019, 5:345-352.
[3] Chen Z, Wang H, Xia Y, et al. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF[J]. J Immunol, 2018, 201:2472-2482.
[4] Guo X, Chen G. Hypoxia-inducible factor is critical for pathogenesis and regulation of immune cell functions in rheumatoid arthritis[J]. Front Immunol, 2020, 11:1668.
[5] Serocki M, Bartoszewska S, Janaszak-Jasiecka A, et al. miRNAs regulate the HIF switch during hypoxia:a novel therapeutic target[J]. Angiogenesis, 2018, 21:183-202.
[6] Sun MH, Wu H, Bu YH, et al. Research progress of signaling pathways involved in expression of hypoxia-inducible factor-1α in rheumatoid arthritis[J]. Chin Pharmacol Bull (中国药理学通报), 2019, 35:1197-1202.
[7] Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis[J]. Front Pharmacol, 2016, 7:184.
[8] Befani C, Liakos P. The role of hypoxia-inducible factor-2 alpha in angiogenesis[J]. J Cell Physiol, 2018, 233:9087-9098.
[9] Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59:455-467.
[10] Kim JW, Kong JS, Lee S, et al. Angiogenic cytokines can reflect the synovitis severity and treatment response to biologics in rheumatoid arthritis[J]. Exp Mol Med, 2020, 52:843-853.
[11] Li Y, Yang B, Bai JY, et al. The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis[J]. Int Immunopharmacol, 2019, 73:362-369.
[12] Teichert M, Milde L, Holm A, et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation[J]. Nat Commun, 2017, 8:16106.
[13] Yan M, Hu Y, Yao M, et al. GM-CSF ameliorates microvascular barrier integrity via pericyte-derived Ang-1 in wound healing[J]. Wound Repair Regen, 2017, 25:933-943.
[14] Saharinen P, Eklund L, Alitalo K. Therapeutic targeting of the angiopoietin-TIE pathway[J]. Nat Rev Drug Discov, 2017, 16:635-661.
[15] Balogh E, Veale DJ, McGarry T, et al. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis[J]. Arthritis Res Ther, 2018, 20:95.
[16] Kazerounian S, Lawler J. Integration of pro- and anti-angiogenic signals by endothelial cells[J]. J Cell Commun Signal, 2018, 12:171-179.
[17] Qian C, Zheng WW, Zou W, et al. Research progress on the role of Ang/Tie axis in angiogenesis and metastasis[J]. Acta Pharm Sin (药学学报), 2020, 55:2291-2297.
[18] Kayakabe K, Kuroiwa T, Sakurai N, et al. Interleukin-6 promotes destabilized angiogenesis by modulating angiopoietin expression in rheumatoid arthritis[J]. Rheumatology (Oxford), 2012, 51:1571-1579.
[19] Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1[J]. Mol Cell Biol, 1996, 16:4604-4613.
[20] Carroll VA, Ashcroft M. Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2 alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function:implications for targeting the HIF pathway[J]. Cancer Res, 2006, 66:6264-6270.
[21] Ryu JH, Chae CS, Kwak JS, et al. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis[J]. PLoS Biol, 2014, 12:e1001881.
[22] Hu Y, Zhang T, Chen J, et al. Downregulation of hypoxia-inducible factor-1α by RNA interference alleviates the development of collagen-induced arthritis in rats[J]. Mol Ther Nucleic Acids, 2020, 19:1330-1342.
[23] Li Y, Liu Y, Wang C, et al. Succinate induces synovial angiogenesis in rheumatoid arthritis through metabolic remodeling and HIF-1α/VEGF axis[J]. Free Radic Biol Med, 2018, 126:1-14.
[24] Xiong Y, Huo Y, Chen C, et al. Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways[J]. J Biol Chem, 2009, 284:23217-23224.
[25] Guo Y, Xing E, Liang X, et al. Effects of total saponins from Rhizoma Dioscoreae Nipponicae on expression of vascular endothelial growth factor and angiopoietin-2 and Tie-2 receptors in the synovium of rats with rheumatoid arthritis[J]. J Chin Med Assoc, 2016, 79:264-271.
[26] Jiang S, Li Y, Lin T, et al. IL-35 Inhibits angiogenesis through VEGF/Ang2/Tie2 pathway in rheumatoid arthritis[J]. Cell Physiol Biochem, 2016, 40:1105-1116.
[27] Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis[J]. Autoimmun Rev, 2017, 16:594-601.
[28] Quiñonez-Flores CM, González-Chávez SA, Pacheco-Tena C. Hypoxia and its implications in rheumatoid arthritis[J]. J Biomed Sci, 2016, 23:62.
[29] Xu J, Feng Z, Chen S, et al. Taxol alleviates collagen-induced arthritis in mice by inhibiting the formation of microvessels[J]. Clin Rheumatol, 2019, 38:19-27.
[30] Wang W, Zhou H, Liu L. Side effects of methotrexate therapy for rheumatoid arthritis:a systematic review[J]. Eur J Med Chem, 2018, 158:502-516.
[31] Sparks JA. Rheumatoid arthritis[J]. Ann Intern Med, 2019, 170:ITC1-ITC16.
[32] Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis[J]. Nat Rev Dis Primers, 2018, 4:18001.
[33] Wilson JC, Sarsour K, Gale S, et al. Incidence and risk of glucocorticoid-associated adverse effects in patients with rheumatoid arthritis[J]. Arthritis Care Res (Hoboken), 2019, 71:498-511.
[34] Li Y, Liu Y, Du B, et al. Reshaping tumor blood vessels to enhance drug penetration with a multistrategy synergistic nanosystem[J]. Mol Pharm, 2020, 17:3151-3164.
[35] Portugal J. Challenging transcription by DNA-binding antitumor drugs[J]. Biochem Pharmacol, 2018, 155:336-345.
[36] Peng S, Zhang J, Tan X, et al. The VHL/HIF axis in the development and treatment of pheochromocytoma/paraganglioma[J]. Front Endocrinol (Lausanne), 2020, 11:586857.
[37] Latha MS, Saddala MS. Molecular docking based screening of a simulated HIF-1 protein model for potential inhibitors[J]. Bioinformation, 2017, 13:388-393.
[38] Bailey CM, Liu Y, Peng G, et al. Liposomal formulation of HIF-1α inhibitor echinomycin eliminates established metastases of triple-negative breast cancer[J]. Nanomedicine, 2020, 29:102278.
[39] Chellappan DK, Leng KH, Jia LJ, et al. The role of bevacizumab on tumour angiogenesis and in the management of gynaecological cancers:a review[J]. Biomed Pharmacother, 2018, 102:1127-1144.
[40] Liao J, Jin H, Li S, et al. Apatinib potentiates irradiation effect via suppressing PI3K/AKT signaling pathway in hepatocellular carcinoma[J]. J Exp Clin Cancer Res, 2019, 38:454.
[41] Hyman DM, Rizvi N, Natale R, et al. Phase I study of MEDI3617, a selective angiopoietin-2 inhibitor alone and combined with carboplatin/paclitaxel, paclitaxel, or bevacizumab for advanced solid tumors[J]. Clin Cancer Res, 2018, 24:2749-2757.
[42] Martin-Liberal J, Hollebecque A, Aftimos P, et al. First-in-human, dose-escalation, phase 1 study of anti-angiopoietin-2 LY3127804 as monotherapy and in combination with ramucirumab in patients with advanced solid tumours[J]. Br J Cancer, 2020, 123:1235-1243.
[43] Hussain RM, Neiweem AE, Kansara V, et al. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease[J]. Expert Opin Investig Drugs, 2019, 28:861-869.
相关文献:
1.杨婷, 张莉君, 黄睿, 兰海月, 张宏, 栾鑫, 张卫东.中药活性成分调控血管新生的研究进展[J]. 药学学报, 2020,55(9): 1995-2007
2.龚陈媛, 陆 宾, 杨 莉, 王 磊, 季莉莉.石斛联苄类化合物抑制血管新生的机制[J]. 药学学报, 2013,48(3): 337-342
3.闫文义, 于东明, 皇甫超申.亚硝酸钠诱导PC12细胞分化[J]. 药学学报, 2012,47(9): 1147-1152
4.李菌;周慧君;.二氢青蒿素抑制K562细胞血管内皮生长因子的表达[J]. 药学学报, 2005,40(11): 1041-1045