药学学报, 2021, 56(5): 1253-1264
曹佳文, 曹丹燕*, 熊兵. 噬菌体展示环肽药物研究进展[J]. 药学学报, 2021, 56(5): 1253-1264.
CAO Jia-wen, CAO Dan-yan*, XIONG Bing. Research progress of cyclic peptides derived from phage display technology[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1253-1264.

曹佳文, 曹丹燕*, 熊兵
中国科学院大学, 中国科学院上海药物研究所, 上海 201203
关键词:    环肽药物      噬菌体展示      BT1718      PTG-300     
Research progress of cyclic peptides derived from phage display technology
CAO Jia-wen, CAO Dan-yan*, XIONG Bing
University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai Institute of Materia Medica, Shanghai 201203, China
Cyclic peptide drugs have gradually become an emerging research direction due to their some favorable properties such as high-efficiency binding affinity, high selectivity, lower toxicity, and stable metabolism. In recent years, the number of cyclic peptide drugs under clinical research has continued to increase. Unlike the previous cyclic peptide drugs, which were mostly derived from natural products and their derivatives, these cyclic peptide drugs are designed by genetically encoded display technologies which are based on rational design and in vitro evolution (such as BT1718, PTG-300, POL6326, etc). Among them, phage display technology has some advantages such as mature research system, low cost, and simpler operation that make it well recognized and praised by the majority of researchers in this field. Here, we reviewed the recent progress of applying phage display technology to explore diverse cyclic peptide libraries, which, we believe, will contribute more valuable candidate cyclic peptide drugs in clinical research.
Key words:    cyclic peptide    phage display technology    BT1718    PTG-300   
收稿日期: 2020-10-10
DOI: 10.16438/j.0513-4870.2020-1595
通讯作者: 曹丹燕,Tel:86-21-50806600-5407,E-mail:caody@simm.ac.cn
Email: caody@simm.ac.cn
PDF(1380KB) Free
曹佳文  在本刊中的所有文章
曹丹燕*  在本刊中的所有文章
熊兵  在本刊中的所有文章

[1] Dougherty PG, Sahni A, Pei D. Understanding cell penetration of cyclic peptides[J]. Chem Rev, 2019, 119:10241-10287.
[2] Driggers EM, Hale SP, Lee J, et al. The exploration of macrocycles for drug discovery--an underexploited structural class[J]. Nat Rev Drug Discov, 2008, 7:608-624.
[3] Gang D, Kim D, Park HS. Cyclic peptides:promising scaffolds for biopharmaceuticals[J]. Genes, 2018, 9:557.
[4] Villar EA, Beglov D, Chennamadhavuni S, et al. How proteins bind macrocycles[J]. Nat Chem Biol, 2014, 10:723-731.
[5] Deyle K, Kong XD, Heinis C. Phage selection of cyclic peptides for application in research and drug development[J]. Acc Chem Res, 2017, 50:1866-1874.
[6] Zorzi A, Deyle K, Heinis C. Cyclic peptide therapeutics:past, present and future[J]. Curr Opin Chem Biol, 2017, 38:24-29.
[7] Jing X, Jin K. A gold mine for drug discovery:strategies to develop cyclic peptides into therapies[J]. Med Res Rev, 2019, 40:753-810.
[8] Giordanetto F, Kihlberg J. Macrocyclic drugs and clinical candidates:what can medicinal chemists learn from their properties?[J]. J Med Chem, 2014, 57:278-295.
[9] Smith G. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228:1315-1317.
[10] Nixon AE, Sexton DJ, Ladner RC. Drugs derived from phage display:from candidate identification to clinical practice[J]. MAbs, 2014, 6:73-85.
[11] Huang Y, Wiedmann MM, Suga H. RNA display methods for the discovery of bioactive macrocycles[J]. Chem Rev, 2019, 119:10360-10391.
[12] Nemoto N, Miyamoto-Sato E, Husimi Y, et al. In vitro virus:bonding of mRNA bearing puromycin at the 3'-terminal end to the C-terminal end of its encoded protein on the ribosome in vitro[J]. FEBS Lett, 1997, 414:405-408.
[13] Tavassoli A. SICLOPPS cyclic peptide libraries in drug discovery[J]. Curr Opin Chem Biol, 2017, 38:30-35.
[14] Omidfar K, Daneshpour M. Advances in phage display technology for drug discovery[J]. Expert Opin Drug Dis, 2015, 10:651-669.
[15] Tian M, Li S, Wang JJ, et al. Multimodal imaging quantitative analysis of geographic atrophy in aged-related macular degeneration[J]. Chin J Ocul Fundus Dis (中华眼底病杂志), 2017, 33:580-583.
[16] Chang YS, Graves B, Guerlavais V, et al. Stapled α-helical peptide drug development:a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy[J]. Proc Natl Acad Sci U S A, 2013, 110:E3445-3454.
[17] Renato D. Viruses with recombinant surface proteins:EP, 19830900590[P]. 1983-01-07.
[18] McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies:filamentous phage displaying antibody variable domains[J]. Nature, 1990, 348:552-554.
[19] Heinis C, Rutherford T, Freund S, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides[J]. Nat Chem Biol, 2009, 5:502-507.
[20] Luzi S, Kondo Y, Bernard E, et al. Subunit disassembly and inhibition of TNFα by a semi-synthetic bicyclic peptide[J]. PEDS, 2015, 28:45-52.
[21] Wu R. Recombinant DNA Methodology[M]. San Diego:Academic Press, 1989:225-233.
[22] Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, et al. Phage display as a technology delivering on the promise of peptide drug discovery[J]. Drug Discov Today, 2013, 18:1144-1157.
[23] Qi H, Lu H, Qiu HJ, et al. Phagemid vectors for phage display:properties, characteristics and construction[J]. J Mol Biol, 2012, 417:129-143.
[24] Barbas CF III, Burton DR, Scott JK, et al. Phage Display:A Laboratory Manual[M]. New York:Cold Spring Harbor Laboratory Press, 2001:4.2-4.5.
[25] Sidhu SS. Phage Display in Biotechnology and Drug Discovery[M]. Boca Raton:CRC Press, 2015:111-142.
[26] Smith GP, Petrenko VA. Phage display[J]. Chem Rev, 1997, 97:391-410.
[27] Deramchia K, Jacobin-Valat MJ, Vallet A, et al. In vivo phage display to identify new human antibody fragments homing to atherosclerotic endothelial and subendothelial tissues[J]. Am J Pathol, 2012, 180:2576-2589.
[28] Sánchez-Martín D, Martínez-Torrecuadrada J, Teesalu T, et al. Proteasome activator complex PA28 identified as an accessible target in prostate cancer by in vivo selection of human antibodies[J]. Proc Natl Acad Sci U S A, 2013, 110:13791-13796.
[29] Dias-Neto E, Nunes D, Giordano R, et al. Next-generation phage display:integrating and comparing available molecular tools to enable cost-effective high-throughput analysis[J]. PLoS One, 2009, 4:e8338.
[30] Rentero Rebollo I, Sabisz M, Baeriswyl V, et al. Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides[J]. Nucleic Acids Res, 2014, 42:e169.
[31] Villequey C, Kong XD, Heinis C. Bypassing bacterial infection in phage display by sequencing DNA released from phage particles[J]. PEDS, 2017, 30:761-768.
[32] Rentero Rebollo I, Heinis C. Phage selection of bicyclic peptides[J]. Methods, 2013, 60:46-54.
[33] Nixon AE. Therapeutic Peptides[M]. Totowa New Jersey:Humana Press, 2014:67-79.
[34] Zhang X, Zhan JB. Screening method and application of phage display peptide library[J]. Fujian Med J (福建医药杂志), 2004, 26:153-156.
[35] O'Neil KT, Hoess RH, Jackson S, et al. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library[J]. Proteins, 1992, 14:509-515.
[36] McLafferty MA, Kent RB, Ladner RC, et al. M13 bacteriophage displaying disulfide-constrained microproteins[J]. Gene, 1993, 128:29-36.
[37] Xu P, Andreasen PA, Huang M. Structural principles in the development of cyclic peptidic enzyme inhibitors[J]. Int J Biol Sci, 2017, 13:1222-1233.
[38] Andersen LM, Wind T, Hansen HD, et al. A cyclic peptidylic inhibitor of murine urokinase-type plasminogen activator:changing species specificity by substitution of a single residue[J]. Biochem J, 2008, 412:447-457.
[39] Huang LL, Sexton DJ, Skogerson K, et al. Novel peptide inhibitors of angiotensin-converting enzyme 2[J]. J Biol Chem, 2003, 278:15532-15540.
[40] Jafari MR, Deng L, Kitov PI, et al. Discovery of light-responsive ligands through screening of a light-responsive genetically encoded library[J]. ACS Chem Biol, 2014, 9:443-450.
[41] Owens AE, Iannuzzelli JA, Gu Y, et al. MOrPH-PhD:an integrated phage display platform for the discovery of functional genetically encoded peptide macrocycles[J]. ACS Cent Sci, 2020, 6:368-381.
[42] Anananuchatkul T, Chang IV, Miki T, et al. Construction of a stapled α-helix peptide library displayed on phage for the screening of galectin-3-binding peptide ligands[J]. ACS Omega, 2020, 5:5666-5674.
[43] Krook M, Lindbladh C, Eriksen JA, et al. Selection of a cyclic nonapeptide inhibitor to α-chymotrypsin using a phage display peptide library[J]. Mol Divers, 1997, 3:149-159.
[44] Wu P, Leinonen J, Koivunen E, et al. Identification of novel prostate-specific antigen-binding peptides modulating its enzyme activity[J]. Eur J Biochem, 2010, 267:6212-6220.
[45] Heinis C, Rutherford T, Freund S, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides[J]. Nat Chem Biol, 2009, 5:502-507.
[46] Baeriswyl V, Rapley H, Pollaro L, et al. Bicyclic peptides with optimized ring size inhibit human plasma kallikrein and its orthologues while sparing paralogous proteases[J]. ChemMedChem, 2012, 7:1173-1176.
[47] Chen S, Morales-Sanfrutos J, Angelini A, et al. Structurally diverse cyclisation linkers impose different backbone conformations in bicyclic peptides[J]. ChemBioChem, 2012, 13:1032-1038.
[48] Bertoldo D, Khan MMG, Dessen P, et al. Phage selection of peptide macrocycles against β-catenin to interfere with Wnt signaling[J]. ChemMedChem, 2016, 11:834-839
[49] Zheng Y, Meng X, Wu Y, et al. De novo design of constrained and sequence-independent peptide scaffolds with topologically-formidable disulfide connectivities[J]. Chem Sci, 2018, 9:569-575.
[50] Timmerman P, Beld J, Puijk WC, et al. Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces[J]. ChemBioChem, 2005, 6:821-824.
[51] Rhodes CA, Pei D. Bicyclic peptides as next-generation therapeutics[J]. Chemistry, 2017, 23:12690-12703.
[52] Jing X, Jin K. A gold mine for drug discovery:strategies to develop cyclic peptides into therapies[J]. Med Res Rev, 2020, 40:753-810.