药学学报, 2021, 56(5): 1286-1292
引用本文:
武文泽, 令狐婷, 高耀, 赵云昊, 韩雨梅, 秦雪梅, 田俊生. 稳定同位素示踪代谢组学技术在葡萄糖分解代谢研究中的应用进展[J]. 药学学报, 2021, 56(5): 1286-1292.
WU Wen-ze, LINGHU Ting, GAO Yao, ZHAO Yun-hao, HAN Yu-mei, QIN Xue-mei, TIAN Jun-sheng. Application of stable isotope-resolved metabolomics in glucose catabolism[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1286-1292.

稳定同位素示踪代谢组学技术在葡萄糖分解代谢研究中的应用进展
武文泽1, 令狐婷1, 高耀1, 赵云昊1, 韩雨梅2, 秦雪梅1*, 田俊生1*
1. 山西大学中医药现代研究中心, 山西 太原 030006;
2. 山西大学体育学院, 山西 太原 030006
摘要:
随着核磁共振、质谱等高灵敏度检测技术的快速发展,稳定同位素示踪代谢组学技术在阐明代谢通路调控机制以及代谢流分析方面应用日益广泛,且取得了一些突破性的进展。本文对稳定同位素示踪代谢组学在葡萄糖分解代谢调控、代谢流分析、关键代谢通路功能阐释等方面的应用展开综述,为该技术的推广应用及科学研究提供参考依据。
关键词:    稳定同位素示踪代谢组学      葡萄糖分解代谢      代谢通路      代谢流分析     
Application of stable isotope-resolved metabolomics in glucose catabolism
WU Wen-ze1, LINGHU Ting1, GAO Yao1, ZHAO Yun-hao1, HAN Yu-mei2, QIN Xue-mei1*, TIAN Jun-sheng1*
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China;
2. School of Physical Education, Shanxi University, Taiyuan 030006, China
Abstract:
With the rapid development of high sensitivity detection techniques such as nuclear magnetic resonance and mass spectrometry, stable isotope-resolved metabolomics has been widely used in elucidating the regulatory mechanism of metabolic pathways and metabolic flow analysis, and some breakthroughs have been made. In this paper the application of stable isotope-resolved metabolomics in glucose catabolic regulation, metabolic flow analysis and functional interpretation of key metabolic pathways is reviewed, providing references for the wider use and application of this technology.
Key words:    stable isotope-resolved metabolomics    glucose catabolism    metabolic pathway    metabolic flux   
收稿日期: 2021-02-05
DOI: 10.16438/j.0513-4870.2021-0213
基金项目: 国家“重大新药创制”科技重大专项(2017ZX09301047);国家自然科学基金资助项目(82074147);山西省科技重点研发计划(201903D321210);山西省“1331工程”协同创新中心建设计划.
通讯作者: 田俊生,Tel:86-351-7019297,E-mail:jstian@sxu.edu.cn;秦雪梅,Tel:86-351-7011202,E-mail:qinxm@sxu.edu.cn
Email: jstian@sxu.edu.cn;qinxm@sxu.edu.cn
相关功能
PDF(760KB) Free
打印本文
0
作者相关文章
武文泽  在本刊中的所有文章
令狐婷  在本刊中的所有文章
高耀  在本刊中的所有文章
赵云昊  在本刊中的所有文章
韩雨梅  在本刊中的所有文章
秦雪梅  在本刊中的所有文章
田俊生  在本刊中的所有文章

参考文献:
[1] Zhang HL, Si YM. Application of metabonomics in chronic obstructive pulmonary disease[J]. Acta Chin Med (中医学报), 2020, 35:1913-1917.
[2] Bruntz RC, Lane AN, Higashi RM, et al. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM)[J]. J Biol Chem, 2017, 292:11601-11609.
[3] Gao YH, Zhang XM, Duan W, et al. Stable isotope tracer-based metabolomics and applications for clinical research[J]. Life Sci Res (生命科学研究), 2017, 21:558-564.
[4] Linghu T, Tian JS, Qin XM, et al. Applications progress of stable isotopic tracer technique in metabolic regulation of endogenous substances[J]. Chin Tradit Herb Drugs (中草药), 2018, 49:2678-2685.
[5] Zhu L. Mechanism of Myostatin Gene Mutation Improving Antioxidant Capacity of Bovine Muscle (Myostatin基因突变提高牛肌肉抗氧化能力的机制研究)[D]. Hohhot:Inner Mongolia University, 2020.
[6] Wang S, Kong WJ, Yang MH. Simultaneous determination of 11 mycotoxins in malt by isotope internal standard-UPLC-MS/MS[J]. Acta Pharm Sin (药学学报), 2016, 51:110-115.
[7] Guerini E, Schadt S, Greig G, et al. A double-tracer technique to characterize absorption, distribution, metabolism and excretion (ADME) of[14C]-basimglurant and absolute bioavailability after oral administration and concomitant intravenous microdose administration of[13C6]-labeled basimglurant in humans[J]. Xenobiotica, 2017, 47:144-153.
[8] Fan WM, Warmoes MO, Sun Q, et al. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator β-glucan in a two-case ex vivo non-small-cell lung cancer study[J]. Cold Spring Harb Mol Case Stud, 2016, 2:a000893.
[9] Sellers K, Fox MP, Bousamra M, et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation[J]. J Clin Invest, 2015, 125:687-698.
[10] Lane AN, Fan TW. NMR-based stable isotope resolved metabolomics in systems biochemistry[J]. Arch Biochem Biophys, 2011, 628:123-131.
[11] Boros LG, Lerner MR, Morgan DL, et al.[1,2-13C2]-D-glucose profiles of the serum, liver, pancreas, and DMBA-induced pancreatic tumors of rats[J]. Pancreas, 2005, 31:337-343.
[12] Lee WN, Boros LG, Puigjaner J, et al. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with[1,2-13C2]-glucose[J]. Am J Physiol, 1998, 274:E843-E851.
[13] Lee MH, Malloy CR, Corbin IR, et al. Assessing the pentose phosphate pathway using[2,3-13C2]-glucose[J]. NMR Biomed, 2019, 32:e4096.
[14] Cheng T, Sudderth J, Yang C, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells[J]. Proc Natl Acad Sci U S A, 2011, 108:8674-8679.
[15] Sellers K, Fox MP, Deshpande R, et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation[J]. J Clin Invest, 2015, 125:687-698.
[16] Sheng H, Jonathan M, Raphael J, et al. Glucose indirectly fuels the TCA cycle in tumors via lactate[J]. Cancer Discov, 2017, 7678:115-118.
[17] Charidemou E, Ashmore T, Griffin JL. The use of stable isotopes in the study of human pathophysiology[J]. Int J Biochem Cell Biol, 2017, 93:102-109.
[18] Dietmair S, Timmins NE, Gray PP, et al. Towards quantitative metabolomics of mammalian cells:development of a metabolite extraction protocol[J]. Anal Biochem, 2010, 404:155-164.
[19] Wang XY, Li Y, He JM, et al. Research progress on the regulation of tumor metabolism, tumor immunotherapy and new analytical methods[J]. Acta Pharm Sin (药学学报), 2020, 55:2080-2091.
[20] Bai YH, Wang YY, Yang YL, et al. The research progress of the relationship between brain energy metabolism and mitochondria[J]. Prog Mod Biomed (现代生物医学进展), 2018, 18:3382-3387.
[21] Foltynie T. Glycolysis as a therapeutic target for Parkinson's disease[J]. Lancet Neurol, 2019, 18:1072-1074.
[22] Pathania D, Millard M, Neamati N. Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism[J]. Adv Drug Deliv Rev, 2009, 61:1250-1275.
[23] Ge T, Yang J, Zhou S, et al. The role of the pentose phosphate pathway in diabetes and cancer[J]. Front Endocrinol, 2020, 11:365.
[24] Linghu T, Tian J, Qin X, et al. A unique insight for energy metabolism disorders in depression based on chronic unpredictable mild stress rats using stable isotope-resolved metabolomics[J]. J Pharm Biomed Anal, 2020, 191:113588.
[25] Zhang BY, Liu AL, Du GH. Energy metabolism disorder and diseases:from effects to potential targets[J]. Acta Pharm Sin (药学学报), 2019, 54:1372-1381.
[26] Hu L, Zeng Z, Xia Q, et al. Metformin attenuates hepatoma cell proliferation by decreasing glycolytic flux through the HIF-1α/PFKFB3/PFK1 pathway[J]. Life Sci, 2019, 239:116966.
[27] Gu J, Hu X, Shao W, et al. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis[J]. Oncotarget, 2016, 7:60053-60073.
[28] Yin MF. The Quantitative Relationship Between the Contribution of Glucose and Lactate to the Tricarboxylic Acid Circulating Isotope and the Net Contribution of Tumor Cells (葡萄糖和乳酸对肿瘤细胞三羧酸循环同位素贡献与净贡献之间的定量关系)[D]. Hangzhou:Zhejiang University, 2019.
[29] Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate[J]. Nature, 2017, 551:115-118.
[30] Hensley CT, Faubert B, Yuan Q, et al. Metabolic heterogeneity in human lung tumors[J]. Cell, 2016, 164:681-694.
[31] Faubert B, Li KY, Cai L, et al. Lactate metabolism in human lung tumors[J]. Cell, 2017, 171:358-371.
[32] Ying M, Guo C, Hu X, et al. The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle[J]. J Biol Chem, 2019, 294:9615-9630.
[33] Magnusson I, Chandramouli V, Landau BR, et al. Pentose pathway in human liver[J]. Proc Natl Acad Sci U S A, 1988, 85:4682-4685.
[34] Lee WN, Boros LG, Lim S, et al. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with[1,2-13C2]-glucose[J]. Am J Physiol, 1998, 274:843-851.
[35] Miccheli A, Tomassini A, Conti F, et al. Metabolic profiling by 13C-NMR spectroscopy:[1,2-13C2]-glucose reveals a heterogeneous metabolism in human leukemia T cells[J]. Biochimie, 2006, 88:437-448.
[36] Jin ES, Sherry AD, Malloy CR. An oral load of[13C3]-glycerol and blood NMR analysis detect fatty acid esterification, pentose phosphate pathway, and glycerol metabolism through the tricarboxylic acid cycle in human liver[J]. J Biol Chem, 2016, 291:19031-19041.
[37] Landau BR. Stable isotope techniques for the study of gluconeogenesis in man[J]. Horm Metab Res, 1997, 29:334-336.
[38] Landau BR. Quantifying the contribution of gluconeogenesis to glucose production in fasted human subjects using stable isotopes[J]. Proc Nutr Soc, 1999, 58:963-972.
[39] Wiechert W. 13C metabolic flux analysis[J]. Metab Eng, 2001, 3:195-206.
[40] Antoniewicz MR. Methods and advances in metabolic flux analysis:a mini-review[J]. J Ind Microbiol Biotechnol, 2015, 417:317-325.
[41] Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing[J]. Cell, 2018, 173:822-837.