药学学报, 2021, 56(5): 1293-1300
引用本文:
李蓉蓉, 王缘, 刘哲, 修雪亮, 刘勇, 王延妮, 马凤森*. 微针应用后皮肤孔道形成与闭合的影响因素及评价方法[J]. 药学学报, 2021, 56(5): 1293-1300.
LI Rong-rong, WANG Yuan, LIU Zhe, XIU Xue-liang, LIU Yong, WANG Yan-ni, MA Feng-sen*. Influencing factors and evaluation methods of skin microchannels formation and closure after microneedles application[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1293-1300.

微针应用后皮肤孔道形成与闭合的影响因素及评价方法
李蓉蓉, 王缘, 刘哲, 修雪亮, 刘勇, 王延妮, 马凤森*
浙江工业大学药学院, 生物制剂与材料实验室, 浙江 杭州 310014
摘要:
微针作为一种微创、安全和高效的新型经皮给药技术,受到越来越多的关注。微针在皮肤表面形成的孔道是该技术递送药物的前提和关键,但目前缺少对皮肤孔道的系统性评价。本文综述了有关微针致皮肤孔道形成与闭合的影响因素及评价方法,涉及微针几何参数、制备材料、药物、刺入参数、受试者皮肤差异和有无闭塞等方面因素,为微针应用的有效性和安全性提供参考和借鉴。
关键词:    经皮给药      微针      评价方法      孔道      影响因素     
Influencing factors and evaluation methods of skin microchannels formation and closure after microneedles application
LI Rong-rong, WANG Yuan, LIU Zhe, XIU Xue-liang, LIU Yong, WANG Yan-ni, MA Feng-sen*
Biologics and Biomaterials Laboratory, College of Pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
Abstract:
As a novel transdermal drug delivery technology of minimally invasive, safe and efficient, microneedles have received increasing attention. The microchannels formation by microneedles onto the skin is a prerequisite and key for microneedles to deliver drugs. However, there is still a lack of systematic evaluation in skin microchannels. This review summarized influencing factors and evaluation methods in microchannels formation and healing by microneedles, including geometric parameters, materials for preparation, drugs, penetration parameters, differences among the skin of subjects, and presence or absence of occlusion. This review provides reference for other scholars to further study the effectiveness and security of microneedle applications.
Key words:    transdermal drug delivery    microneedle    evaluation method    microchannel    influencing factor   
收稿日期: 2020-11-07
DOI: 10.16438/j.0513-4870.2020-1724
基金项目: 浙江省重点科技创新团队计划资助项目(2013TD15).
通讯作者: 马凤森,Tel:86-571-88320218,E-mail:merrigen@126.com
Email: merrigen@126.com
相关功能
PDF(929KB) Free
打印本文
0
作者相关文章
李蓉蓉  在本刊中的所有文章
王缘  在本刊中的所有文章
刘哲  在本刊中的所有文章
修雪亮  在本刊中的所有文章
刘勇  在本刊中的所有文章
王延妮  在本刊中的所有文章
马凤森*  在本刊中的所有文章

参考文献:
[1] Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery[J]. Nat Rev Drug Discov, 2004, 3:115-124.
[2] Brogden NK, Milewski M, Ghosh P, et al. Diclofenac delays micropore closure following microneedle treatment in human subjects[J]. J Control Release, 2012, 163:220-229.
[3] Xie Y, Xu B, Gao Y. Controlled transdermal delivery of model drug compounds by MEMS microneedle array[J]. Nanomedicine, 2005, 1:184-190.
[4] Duarah S, Sharma M, Wen J. Recent advances in microneedle-based drug delivery:special emphasis on its use in paediatric population[J]. Eur J Pharm Biopharm, 2019, 136:48-69.
[5] Donnelly RF, Raj Singh TR, Woolfson AD. Microneedle-based drug delivery systems:microfabrication, drug delivery, and safety[J]. Drug Deliv, 2010, 17:187-207.
[6] Dou JJ, Yan JH, Xu K, et al. Transdermal delivery of Gentiana macrophylla complex components system under micro-needle conditions[J]. Acta Pharm Sin (药学学报), 2011, 46:1137-1143.
[7] Zhang ZB, Fang DM. Research progress of microneedle technology in transdermal drug delivery system[J] Tianjin Pharm (天津药学), 2018, 30:40-43.
[8] Shen RX, Zhu ZZ, Tong XL, et al. Preparation and evaluation of soluble microneedle patch loaded with salmon calcitonin[J]. Chin J Pharms (中国医药工业杂志), 2018, 49:1264-1271.
[9] Ma CM, Cai JL. The research advancement and the application on importing drugs through the skin microneedle in plastic surgery[J]. Chin J Aesthetic Med (中国美容医学杂志), 2012, 21:860-863.
[10] Hu DL. The Experimental Research of Insertion of Microneedle and Microneedle Array into Silicon Membrane (微针及其阵列刺入硅胶实验研究)[D]. Dalian:Dalian University of Technology, 2016.
[11] Hou JJ. The Theoretical and Experimental Study of Microneedle Array Inserting into Skin (微针阵列刺入皮肤的理论与实验研究)[D]. Dalian:Dalian University of Technology, 2013.
[12] Liu S, Jin MN, Quan YS, et al. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin[J]. Eur J Pharm Biopharm, 2014, 86:267-276.
[13] Zhan HH, Huang YC, Ma FS, et al. Quality evaluation of lidocaine hydrochloride rapid onset local anesthesia preparation based on microneedles technology[J]. Acta Pharm Sin (药学学报), 2018, 53:1371-1376.
[14] Arya JM, Dewitt K, Scott-Garrard M, et al. Rabies vaccination in dogs using a dissolving microneedle patch[J]. J Control Release, 2016, 239:19-26.
[15] Aung NN, Ngawhirunpat T, Rojanarata T, et al. Fabrication, characterization and comparison of alpha-arbutin loaded dissolving and hydrogel forming microneedles[J]. Int J Pharm, 2020, 586:119508.
[16] Park JH, Choi SO, Seo S, et al. A microneedle roller for transdermal drug delivery[J]. Eur J Pharm Biopharm, 2010, 76:282-289.
[17] Chen MC, Huang SF, Lai KY, et al. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination[J]. Biomaterials, 2013, 34:3077-3086.
[18] Fonseca DFS, Costa PC, Almeida IF, et al. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment[J]. Carbohydr Polym, 2020, 241:116314.
[19] Liu D, Yu B, Jiang G, et al. Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats[J]. Mater Sci Eng C Mater Biol Appl, 2018, 90:180-188.
[20] Nguyen HX, Banga AK. Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser[J]. Pharm Res, 2018, 35:68-88.
[21] Loizidou EZ, Inoue NT, Ashton-Barnett J,et al. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis[J]. Eur J Pharm Biopharm, 2016, 107:1-6.
[22] Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery[J]. Mater Sci Eng C Mater Biol Appl, 2019, 102:743-755.
[23] Kalluri H, Kolli CS, Banga AK. Characterization of microchannels created by metal microneedles:formation and closure[J]. AAPS J, 2011, 13:473-481.
[24] Kalluri H, Banga AK. Formation and closure of microchannels in skin following microporation[J]. Pharm Res, 2011, 28:82-94.
[25] Mao J, Wang H, Xie Y, et al. Transdermal delivery of rapamycin with poor water-solubility by dissolving polymeric microneedles for anti-angiogenesis[J]. J Mater Chem B, 2020, 8:928-934.
[26] Liu S, Zhang S, Duan Y, et al. Transcutaneous immunization of recombinant staphylococcal enterotoxin B protein using a dissolving microneedle provides potent protection against lethal enterotoxin challenge[J]. Vaccine, 2019, 37:3810-3819.
[27] Coulman SA, Birchall JC, Alex A, et al. In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography[J]. Pharm Res, 2011, 28:66-81.
[28] Fercher AF. Optical coherence tomography-development, principles, applications[J]. Z Med Phys, 2010, 20:251-276.
[29] Verbaan FJ, Bal SM, van den Berg DJ, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin[J]. J Control Release, 2007, 117:238-245.
[30] Yan G, Warner KS, Zhang J, et al. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery[J]. Int J Pharm, 2010, 391:7-12.
[31] Elkeeb R, Hui X, Chan H, et al. Correlation of transepidermal water loss with skin barrier properties in vitro:comparison of three evaporimeters[J]. Skin Res Technol, 2010, 16:9-15.
[32] Elmahjoubi E, Frum Y, Eccleston GM, et al. Transepidermal water loss for probing full-thickness skin barrier function:correlation with tritiated water flux, sensitivity to punctures and diverse surfactant exposures[J]. Toxicol In Vitro, 2009, 23:1429-1435.
[33] Prausnitz MR. The effects of electric current applied to skin:a review for transdermal drug delivery[J]. Adv Drug Deliv Rev, 1996, 18:395-425.
[34] Haq MI, Smith E, John DN, et al. Clinical administration of microneedles:skin puncture, pain and sensation[J]. Biomed Microdevices, 2009, 11:35-47.
[35] Bal S, Kruithof AC, Liebl H, et al. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy[J]. Laser Phys Lett, 2010, 7:242-246.
[36] Pearton M, Saller V, Coulman SA, et al. Microneedle delivery of plasmid DNA to living human skin:formulation coating, skin insertion and gene expression[J]. J Control Release, 2012, 160:561-569.
[37] Moussi K, Bukhamsin A, Hidalgo T, et al. Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications[J]. Adv Engineer Mater, 2019, 22:1-10.
[38] Donnelly RF, Garland MJ, Morrow DI, et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution[J]. J Control Release, 2010, 147:333-341.
[39] Donnelly RF, Moffatt K, Alkilani AZ, et al. Hydrogel-forming microneedle arrays can be effectively inserted in skin by self-application:a pilot study centred on pharmacist intervention and a patient information leaflet[J]. Pharm Res, 2014, 31:1989-1999.
[40] Chu LY, Prausnitz MR. Separable arrowhead microneedles[J]. J Control Release, 2011, 149:242-249.
[41] Hu L, Liao Z, Hu Q, et al. Novel Bletilla striata polysaccharide microneedles:fabrication, characterization, and in vitro transcutaneous drug delivery[J]. Int J Biol Macromol, 2018, 117:928-936.
[42] Xenikakis I, Tzimtzimis M, Tsongas K, et al. Fabrication and finite element analysis of stereolithographic 3D printed microneedles for transdermal delivery of model dyes across human skin in vitro[J]. Eur J Pharm Sci, 2019, 137:104976.
[43] Zhang Y, Jiang G, Yu W, et al. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats[J]. Mat Sci Eng C, 2018, 85:18-26.
[44] Carcamo-Martinez A, Anjani QK, Permana AD, et al. Coated polymeric needles for rapid and deep intradermal delivery[J]. Int J Pharm, 2020, 2:100048.
[45] Andersen TE, Andersen AJ, Petersen RS, et al. Drug loaded biodegradable polymer microneedles fabricated by hot embossing[J]. Microelectron Eng, 2018, 195:57-61.
[46] Chen Y, Chen BZ, Wang QL, et al. Fabrication of coated polymer microneedles for transdermal drug delivery[J]. J Control Release, 2017, 265:14-21.
[47] Yung KL, Xu Y, Kang C, et al. Sharp tipped plastic hollow microneedle array by microinjection moulding[J]. J Micromech Microeng, 2012, 22:15-16.
[48] Hsueh KJ, Chen MC, Cheng LT, et al. Transcutaneous immunization of Streptococcus suis bacterin using dissolving microneedles[J]. Comp Immunol Microbiol Infect Dis, 2017, 50:78-87.
[49] Larraneta E, Moore J, Vicente-Perez EM, et al. A proposed model membrane and test method for microneedle insertion studies[J]. Int J Pharm, 2014, 472:65-73.
[50] Vora LK, Courtenay AJ, Tekko IA, et al. Pullulan-based dissolving microneedle arrays for enhanced transdermal delivery of small and large biomolecules[J]. Int J Biol Macromol, 2020, 146:290-298.
[51] Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed microneedles for anticancer therapy of skin tumours[J]. Mat Sci Eng C Mater Biol Appl, 2020, 107:110248.
[52] Maaden VK, Varypataki EM, Yu H, et al. Parameter optimization toward optimal microneedle-based dermal vaccination[J]. Eur J Pharm Sci, 2014, 64:18-25.
[53] Ye R, Yang J, Li Y, et al. Fabrication of tip-hollow and tip-dissolvable microneedle arrays for transdermal drug delivery[J]. ACS Biomater Sci Eng, 2020, 6:2487-2494.
[54] Martanto W, Moore JS, Couse T, et al. Mechanism of fluid infusion during microneedle insertion and retraction[J]. J Control Release, 2006, 112:357-361.
[55] Dillon C, Hughes H, O'Reilly NJ, et al. Dissolving microneedle based transdermal delivery of therapeutic peptide analogues[J]. Int J Pharm, 2019, 565:9-19.
[56] Khan S, Minhas MU, Tekko IA, et al. Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery[J]. Drug Deliv Transl Res, 2019, 9:764-782.
[57] Chen MC, Ling MH, Kusuma SJ. Poly-gamma-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin[J]. Acta Biomater, 2015, 24:106-116.
[58] Vicente-Perez EM, Quinn HL, McAlister E, et al. The use of a pressure-indicating sensor film to provide feedback upon hydrogel-forming microneedle array self-application in vivo[J]. Pharm Res, 2016, 33:3072-3080.
[59] Lhernould MS, Deleers M, Delchambre A. Hollow polymer microneedles array resistance and insertion tests[J]. Int J Pharm, 2015, 480:152-157.
[60] Kelchen MN, Siefers KJ, Converse CC, et al. Micropore closure kinetics are delayed following microneedle insertion in elderly subjects[J]. J Control Release, 2016, 225:294-300.
[61] Vicente-Perez EM, Larraneta E, McCrudden MTC, et al. Repeat application of microneedles does not alter skin appearance or barrier function and causes no measurable disturbance of serum biomarkers of infection, inflammation or immunity in mice in vivo[J]. Eur J Pharm Biopharm, 2017, 117:400-407.
[62] Gomaa YA, Morrow DI, Garland MJ, et al. Effects of microneedle length, density, insertion time and multiple applications on human skin barrier function:assessments by transepidermal water loss[J]. Toxicol In Vitro, 2010, 24:1971-1978.
[63] Martanto W, Davis SP, Holiday NR, et al. Transdermal delivery of insulin using microneedles in vivo[J]. Pharm Res, 2004, 21:947-952.
[64] Gupta J, Gill HS, Andrews SN, et al. Kinetics of skin resealing after insertion of microneedles in human subjects[J]. J Control Release, 2011, 154:148-155.
[65] Li RR, Wang Y, Liu Y, et al. Effects of metal or dissolving microneedles and its parameters of operation on the formation and closure of skin microchannels[J]. Acta Pharm Sin (药学学报), 2021, 56:1163-1169.
[66] Kim S, Yang H, Eum J, et al. Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity[J]. Biomaterials, 2020, 232:119733.
[67] Kim M, Jung B, Park JH. Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin[J]. Biomaterials, 2012, 33:668-678.
[68] Banks SL, Paudel KS, Brogden NK, et al. Diclofenac enables prolonged delivery of naltrexone through microneedle-treated skin[J]. Pharm Res, 2011, 28:1211-1219.
[69] Ghosh P, Pinninti RR, Hammell DC, et al. Development of a codrug approach for sustained drug delivery across microneedle-treated skin[J]. J Pharm Sci, 2013, 102:1458-1467.
[70] Ghosh P, Brogden NK, Stinchcomb AL. Fluvastatin as a micropore lifetime enhancer for sustained delivery across microneedle-treated skin[J]. J Pharm Sci, 2014, 103:652-660.
[71] Elias PM, Tsai J, Menon GK, et al. The potential of metabolic interventions to enhance transdermal drug delivery[J]. J Investig Dermatol Symp Proc, 2002, 7:79-85.
[72] Schneider LA, Korber A, Grabbe S, et al. Influence of pH on wound-healing:a new perspective for wound-therapy?[J]. Arch Dermatol Res, 2007, 298:413-420.
[73] Ghosh P, Brogden NK, Stinchcomb AL. Effect of formulation pH on transport of naltrexone species and pore closure in microneedle-enhanced transdermal drug delivery[J]. Mol Pharm, 2013, 10:2331-2339.
相关文献:
1.李蓉蓉, 王缘, 刘勇, 王延妮, 刘哲, 马凤森*.金属和可溶性微针及其使用参数对皮肤孔道形成与闭合的影响[J]. 药学学报, 2021,56(4): 1163-1169