药学学报, 2021, 56(5): 1352-1359
余娇娇, 张诚, 向昱瑾, 胡卓伟, 崔冰*, 花芳*. TRIB3激活NRF2促进肺癌细胞增殖并抑制其凋亡[J]. 药学学报, 2021, 56(5): 1352-1359.
YU Jiao-jiao, ZHANG Cheng, XIANG Yu-jin, HU Zhuo-wei, CUI Bing*, HUA Fang*. TRIB3 promotes lung cancer cell survival and inhibits apoptosis through NRF2 activation[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1352-1359.

余娇娇, 张诚, 向昱瑾, 胡卓伟, 崔冰*, 花芳*
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 中国医学科学院代谢紊乱和肿瘤发生相关机制和靶点发现重点实验室, 北京 100050
核转录因子NRF2(nuclear factor erythroid 2-related factor 2)是调控细胞氧化还原稳态的重要蛋白。NRF2异常激活所致抗氧化能力提高是导致肿瘤恶性进程和耐药形成的关键原因。本文旨在探究应激蛋白TRIB3(tribbles homolog 3)调节氧化应激,促进肺癌细胞增殖并抑制其凋亡的分子机制。本研究首先对癌症基因组图谱(the cancer genome atlas,TCGA)数据库中576个肺癌临床样本进行生物信息学分析,发现TRIB3高表达肺癌患者NRF2-ARE(antioxidant response element)信号通路活化。双荧光素酶报告基因实验和实时荧光定量PCR检测证实TRIB3促进核转录因子NRF2的转录激活活性,上调其下游靶基因表达。机制及生物学验证研究结果表明,TRIB3主要通过干扰KEAP1(kelch-like ECH-associated protein-1)-NRF2相互作用,进而增强NRF2稳定性。敲低TRIB3促进活性氧自由基(reactive oxygen species,ROS)产生,抑制细胞生长并增加卡铂引起的细胞凋亡;过表达NRF2可逆转敲低TRIB3产生的抑增殖、促凋亡效应;而在NRF2敲低的肿瘤细胞中,抑制TRIB3并不影响肿瘤细胞的增殖和凋亡水平。综上,本研究表明,应激蛋白TRIB3抑制KEAP1-NRF2相互作用,继而上调NRF2转录激活活性,促进肿瘤增殖并降低化疗药物敏感性;靶向TRIB3-NRF2信号轴可能成为治疗肺癌的新策略。
关键词:    TRIB3      氧化应激      蛋白相互作用      NRF2      增殖      凋亡     
TRIB3 promotes lung cancer cell survival and inhibits apoptosis through NRF2 activation
YU Jiao-jiao, ZHANG Cheng, XIANG Yu-jin, HU Zhuo-wei, CUI Bing*, HUA Fang*
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
The nuclear transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) plays a crucial role in maintaining cellular redox homeostasis. The aberrant NRF2 signaling confers enhanced antioxidant capacity, which is linked to tumor progression and therapeutic resistance. The current study investigates the biological effects and molecular mechanism of tribbles homolog 3 (TRIB3), a stress-induced protein, in regulating cell survival and apoptosis in lung cancer. This study first performed the RNA sequencing data analysis with 576 lung adenocarcinoma patients from the cancer genome atlas (TCGA) database. The NRF2-antioxidant response element (ARE) signature was enriched in patients with high TRIB3 expression. Dual-luciferase reporter assay and real-time quantitative polymerase chain reaction (PCR) were used to confirm the effect of TRIB3 on the kelch-like ECH-associated protein-1 (KEAP1)-NRF2 pathway. Abrogation of TRIB3 impaired NRF2 transcriptional activity and reduced the expression of its target genes. Moreover, TRIB3 enhanced NRF2 stability via blocking KEAP1-NRF2 interaction. TRIB3-depletion promoted reactive oxygen species (ROS) production, restrained cell proliferation, and enhanced carboplatin-induced apoptosis. In addition, NRF2 overexpression recovered the tumor inhibition effect of TRIB3-depletion. Consistently, TRIB3 failed to modulate apoptosis in NRF2 depletion cells. In summary, this study shows that TRIB3 inhibits the KEAP1-NRF2 interaction and upregulates the transcriptional activity of NRF2, thereby promoting lung cancer cell proliferation and reducing the sensitivity to chemotherapy. Targeting the TRIB3-NRF2 signal axis may become a new strategy for ROS homeostasis and lung cancer treatment.
Key words:    TRIB3    oxidative stress    protein-protein interaction    NRF2    proliferation    apoptosis   
收稿日期: 2021-02-05
DOI: 10.16438/j.0513-4870.2021-0187
基金项目: 国家自然科学基金资助项目(81973344,81874316,81703564);中国医学科学院医学与健康科技创新工程(2016-I2M-1-007,2016-I2M-3-008);中国医学科学院中央级公益性科研院所基本科研业务费(2017PT31046,2018RC350004);北京高校卓越青年科学家项目(BJJWZYJH01201910023028).
通讯作者: 崔冰,Tel:86-10-83161187,E-mail:cuibing@imm.ac.cn;花芳,E-mail:huafang@imm.ac.cn
Email: cuibing@imm.ac.cn;huafang@imm.ac.cn
PDF(1043KB) Free
余娇娇  在本刊中的所有文章
张诚  在本刊中的所有文章
向昱瑾  在本刊中的所有文章
胡卓伟  在本刊中的所有文章
崔冰*  在本刊中的所有文章
花芳*  在本刊中的所有文章

[1] Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer[J]. Cancer Cell, 2020, 38:167-197.
[2] Liu WJ, Du Y, Wen R, et al. Drug resistance to targeted therapeutic strategies in non-small cell lung cancer[J]. Pharmacol Ther, 2020, 206:107438.
[3] Rojo de la Vega M, Chapman E, Zhang DD. NRF2 and the hallmarks of cancer[J]. Cancer Cell, 2018, 34:21-43.
[4] Cuadrado A, Rojo AI, Wells G, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases[J]. Nat Rev Drug Discov, 2019, 18:295-317.
[5] Liu Y, Tao S, Liao L, et al. TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway[J]. Nat Commun, 2020, 11:348.
[6] DeNicola GM, Chen PH, Mullarky E, et al. NRF2 regulates serine biosynthesis in non-small cell lung cancer[J]. Nat Genet, 2015, 47:1475-1481.
[7] Homma S, Ishii Y, Morishima Y, et al. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer[J]. Clin Cancer Res, 2009, 15:3423-3432.
[8] Zhang L, Chen Q, Wang J. Advances in anti-tumor drug research based on reactive oxygen regulation[J]. Acta Pharm Sin (药学学报), 2020, 55:1453-1465.
[9] Abed DA, Goldstein M, Albanyan H, et al. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents[J]. Acta Pharm Sin B, 2015, 5:285-299.
[10] Hua F, Li K, Yu JJ, et al. TRB3 links insulin/IGF to tumour promotion by interacting with p62 and impeding autophagic/proteasomal degradations[J]. Nat Commun, 2015, 6:7951.
[11] Cui B, Patrick AE, Leonard LD, et al. Highlights of the 2nd International Symposium on Tribbles and Diseases:tribbles tremble in therapeutics for immunity, metabolism, fundamental cell biology and cancer[J]. Acta Pharm Sin B, 2019, 9:443-454.
[12] Hua F, Shang S, Yang YW, et al. TRIB3 interacts with β-catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis[J]. Gastroenterology, 2019, 156:708-721.e15.
[13] Yu JJ, Zhou DD, Yang XX, et al. TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target[J]. Nat Commun, 2020, 11:3660.
[14] Yu JM, Sun W, Wang ZH, et al. TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription[J]. Nat Commun, 2019, 10:5720.
[15] Li K, Wang F, Cao WB, et al. TRIB3 promotes APL progression through stabilization of the oncoprotein PML-RARα and inhibition of p53-mediated senescence[J]. Cancer Cell, 2017, 31:697-710.e7.
[16] Li K, Zhang TT, Wang F, et al. Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression[J]. Oncogene, 2018, 37:2967-2981.
[17] Yeerjiang Z, Wang F, Yang Z, et al. TRIB3 promotes B-ALL progression by suppressing CTSZ-mediated BCR-ABL degradation[J]. Acta Pharm Sin (药学学报), 2020, 55:2628-2635.
[18] Kobayashi A, Kang MI, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2[J]. Mol Cell Biol, 2004, 24:7130-7139.
[19] Zhang DD, Lo SC, Cross JV, et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex[J]. Mol Cell Biol, 2004, 24:10941-10953.
[20] Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer[J]. Nature, 2018, 553:446-454.
[21] Young LC, Campling BG, Cole SP, et al. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer:correlation of protein levels with drug response and messenger RNA levels[J]. Clin Cancer Res, 2001, 7:1798-1804.
1.李高攀, 王文义, 任丽, 谌赛男, 王河山, 许文, 吴水生.常绿钩吻碱抑制人神经胶质瘤U251细胞增殖的体内外作用特征[J]. 药学学报, 2021,56(3): 786-792
2.任春霞, 朱李飞, 余自成.羟苯磺酸钙对顺铂诱导的HK-2细胞凋亡的抑制作用及其机制[J]. 药学学报, 2020,55(8): 1830-1835
3.朱陵霞, 孙晓艳, 陈姣, 蔡雪婷, 曹鹏.雷公藤红素通过抑制PAK1抗胰腺癌作用及其机制研究[J]. 药学学报, 2020,55(1): 60-66
4.魏静, 冯跃平, 郑茜, 王钦, 张春.双香豆素体外抗肿瘤活性筛选及相关机制初探[J]. 药学学报, 2020,55(12): 2904-2910
5.陈婷婷, 黄天一, 李梦雨, 崔杰, 华永庆, 许惠琴.1,2,3,4,6-五没食子酰葡萄糖的骨保护作用与Nrf2/HO-1信号通路的相关性研究[J]. 药学学报, 2020,55(5): 907-914
6.李彩娜, 刘率男, 刘泉, 环奕, 孙素娟, 申竹芳.注射用重组艾塞那肽-人血清白蛋白融合蛋白E2HSA对小鼠胰岛β细胞功能的保护作用[J]. 药学学报, 2020,55(6): 1175-1181
7.于春磊, 徐天娇, 张晓杰, 董妙先, 牛英才.基于“有故无殒”莪术对正常和血瘀证小鼠毒性差异机制的研究[J]. 药学学报, 2019,54(2): 329-334
8.周游, 王艳林, 孙丽丹, 曹春雨, 杨建林.新型精胺氧化酶小分子抑制剂SI-4650抗人骨肉瘤活性及分子机制研究[J]. 药学学报, 2019,54(3): 454-462
9.马旭冉, 王彦礼, 邹迪新, 刘佳星, 宋红新, 杨伟鹏, 李彧.黄芩汤调控Nrf2通路对溃疡性结肠炎大鼠氧化应激作用的影响[J]. 药学学报, 2019,54(4): 653-659
10.罗飘, 楚世峰, 高岩, 罗林明, 彭兰, 陈乃宏.人参皂苷Rg1在肝脏疾病中的药理作用研究进展[J]. 药学学报, 2018,53(1): 21-27
11.李孝贤, 刘仁帅, 方浩.Bcl-2:从靶标到上市药物的研究进展[J]. 药学学报, 2018,53(4): 509-517
12.周婉祎, 赵一秀, 安娜, 白云龙, 张妍, 杨宝峰.花青素对晶状体上皮细胞氧化应激损伤和上皮间充质转化的抑制作用[J]. 药学学报, 2018,53(4): 538-545
13.刘建兵, 戚梦, 李巧琪, 李佳欢, 胡开辉, 林文雄, 傅俊生.虫草素抑制胰腺癌干细胞增殖及转移的机制研究[J]. 药学学报, 2017,52(9): 1404-1409
14.汪梦霞, 赵静宇, 孙冬梅, 孟祥宝, 孙桂波, 孙晓波.三七总皂苷对6-羟基多巴胺诱导SH-SY5Y细胞损伤的保护作用及可能机制[J]. 药学学报, 2016,51(6): 898-906
15.邱水平, 李鸿丽, 石海莲, 吴辉, 黄菲, 张蓓蓓, 吴晓俊, 王峥涛.三七皂苷Ft1抑制乳腺癌细胞增殖、迁移及促进凋亡的机制研究[J]. 药学学报, 2016,51(7): 1091-1097
16.王琳, 余瑞双, 杨文亮, 栾淑娟, 秦本凯, 庞晓斌, 杜冠华.紫杉醇载药胶束对人肺癌A549细胞增殖与凋亡的影响[J]. 药学学报, 2015,50(10): 1240-1245
17.唐克, 杨瀚泽, 李燕, 田康, 李超, 周琬琪, 牛非, 冯志强, 陈晓光.小分子靶向化合物T03的抗肿瘤作用及机制研究[J]. 药学学报, 2014,49(6): 861-868
18.韩苗苗, 王文飞, 刘铭瑶, 李德山, 周兵, 于引航, 任桂萍.FGF-21对H2O2诱导的大鼠心肌细胞H9c2氧化应激损伤的保护作用[J]. 药学学报, 2014,49(4): 470-475
19.唐建武, 林菁.黄癸素诱导三阴性乳腺癌MDA-MB-231细胞凋亡的研究[J]. 药学学报, 2014,49(1): 131-135
20.钟树志, 马世平, 洪宗元.芍药苷活化Nrf2/ARE通路减轻Aβ(1−42)诱导的大鼠海马神经元损伤[J]. 药学学报, 2013,48(8): 1353-1357
21.李 梅, 金 晶, 李 佳, 关翠文, 汪文文, 邱玉文, 黄芝瑛.五味子乙素激活Nrf2/ARE通路对顺铂致HK-2细胞氧化应激损伤的保护作用[J]. 药学学报, 2012,47(11): 1434-1439
22.齐芳华 李安源 赵 林 张 莉 杜冠华 唐 伟.华蟾素诱导人肝癌细胞株HepG2凋亡及其作用机制[J]. 药学学报, 2010,45(3): 318-323
23.明艳林 陈忠炎 陈良华 童庆宣 郑志忠 郑国华 齐晓辉.人参皂苷IH901对ECV304细胞增殖和迁移的影响及其分子机制[J]. 药学学报, 2009,44(9): 967-972
24.周永列;胡惟孝;吕亚萍;邱莲女;王文松;杨忠愚;刘建栋;饶国武.四嗪二甲酰胺对肺癌细胞株A549的体内外作用[J]. 药学学报, 2007,42(1): 26-34
25.张斌;魏欣冰;刘慧青;王立祥;孙茹;张岫美.羟乙基葛根素对脑星形胶质细胞氧化性损伤的保护作用[J]. 药学学报, 2006,41(2): 171-174
26.李剑;左路;沈悌;张之南.亚硒酸钠诱导人急性早幼粒细胞白血病细胞株NB4细胞氧化应激和细胞凋亡[J]. 药学学报, 2002,37(9): 677-681