药学学报, 2021, 56(5): 1444-1452
引用本文:
姚玲玲, 柯昌强, 刘佳, 唐春萍, 叶阳. 不同炮制程度中药饮片蜜炙甘草的次生代谢化学成分组学研究[J]. 药学学报, 2021, 56(5): 1444-1452.
YAO Ling-ling, KE Chang-qiang, LIU Jia, TANG Chun-ping, YE Yang. Metabolomic investigation of secondary metabolites of prepared slices of Glycyrrhiza uralensis with different degrees of honey processing[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1444-1452.

不同炮制程度中药饮片蜜炙甘草的次生代谢化学成分组学研究
姚玲玲1,2, 柯昌强2, 刘佳2, 唐春萍2, 叶阳1,2*
1. 南京中医药大学新中药学院, 江苏 南京 210023;
2. 中国科学院上海药物研究所新药研究国家重点实验室, 上海 201203
摘要:
基于代谢组学方法研究不同炮制程度中药饮片蜜炙甘草的次生代谢化合物差异性标志物。采用超高效液相色谱-四极杆-飞行时间高分辨质谱(UPLC-Q-TOF/MS)联用技术,结合多元统计分析方法,以山西、河北张家口、内蒙古产地甘草生药及其不同炮制程度的蜜炙饮片为实验材料,对其次生代谢产物进行化学成分差异性分析,筛查其差异性的特征化合物。通过建立的UNIFI理论数据库结合对照品的实物库鉴定了中药甘草生药中57个化学成分,其中正离子采集模式鉴定了37个化合物,负离子采集模式鉴定了56个化合物。主成分分析(PCA)结果表明,甘草饮片中次生代谢化合物随蜜炙程度的不同差异较为明显。采用正交偏最小二乘法判别分析(OPLS-DA)方法筛查了炮制适度组和生药组之间的差异化合物,偏最小二乘法判别分析(PLS-DA)方法筛查炮制不及、炮制适度和炮制太过组之间的差异化合物,结果均显示甘草酸、甘草皂苷G2和甘草皂苷E2含量存在差异,经炮制后其含量增加,且在炮制适度时最高(P<0.05)。本研究表明,甘草酸、甘草皂苷G2和甘草皂苷E2可能可以作为不同炮制程度饮片的差异化合物,指导中药饮片蜜炙甘草的炮制程度的过程控制。
关键词:    甘草      蜜炙      代谢组学      甘草酸      甘草皂苷G2      甘草皂苷E2     
Metabolomic investigation of secondary metabolites of prepared slices of Glycyrrhiza uralensis with different degrees of honey processing
YAO Ling-ling1,2, KE Chang-qiang2, LIU Jia2, TANG Chun-ping2, YE Yang1,2*
1. School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China;
2. State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
Abstract:
A metabolomics method was used to search for chemical markers in prepared slices of Glycyrrhiza uralensis with different degrees of honey processing. Coupled with these metabolomics analytical methods, ultra-performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF/MS) was used to generate global chemical profiles of the raw material of Glycyrrhiza uralensis and the prepared slices. The samples were collected in Shanxi, Hebei Zhangjiakou and Inner Mongolia. A total of 57 chemical components were identified in Glycyrrhiza uralensis by using the UNIFI theoretical database combined with the library of reference samples. Among them, 37 compounds were identified in positive ion mode and 56 compounds were identified in negative ion mode. Unsupervised principal component analysis (PCA) showed that the chemical ingredients differed considerably depending on the extent of processing. Supervised orthogonal partial least squares discriminant analysis (OPLS-DA) was used to differentiate the moderate processing group and the raw group, and partial least squares discriminant analysis (PLS-DA) was used to differentiate the less, the moderate, and the excessive processing groups. The results showed that the contents of glycyrrhizic acid, licoricesaponin G2, and licoricesaponin E2 varied with the extent of processing. The content of these components increased after processing, and reached the highest level when the extent of processing was moderate (P<0.05). Glycyrrhizic acid, licoricesaponin G2 and licoricesaponin E2 can be regarded as the chemical markers to differentiate the samples with different degrees of processing. These three compounds can be used to monitor the processing of Glycyrrhiza uralensis.
Key words:    Glycyrrhiza uralensis    honey processed    metabolomics    glycyrrhizic acid    licoricesaponin G2    licoricesaponin E2   
收稿日期: 2021-02-03
DOI: 10.16438/j.0513-4870.2021-0191
基金项目: 国家重点研发计划“中医药现代化研究”(2018YFC1707000).
通讯作者: 叶阳,Tel:86-21-50806726,Fax:86-21-50806898,E-mail:yye@simm.ac.cn
Email: yye@simm.ac.cn
相关功能
PDF(883KB) Free
打印本文
0
作者相关文章
姚玲玲  在本刊中的所有文章
柯昌强  在本刊中的所有文章
刘佳  在本刊中的所有文章
唐春萍  在本刊中的所有文章
叶阳  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. 2020 Ed. Vol Ⅰ. Beijing:China Medical Science Press, 2020:88.
[2] Sun C. Research progress on chemical constituents of Glycyrrhiza uralensis Fisch.[J]. Sci Technol Inf (科技资讯), 2020, 575:70-71.
[3] Du WX. Yao Jian (药鉴)[M]. Shanghai:Shanghai People's Publishing House, 1975:50.
[4] Ye H, Wang JC, Liu P, et al. Study on glycyrrhizic acid content in Glycyrrhiza Uralensis before and after processing in different compatibility[J]. Guangzhou Chem Ind (广州化工), 2018, 46:61-65.
[5] Li HB. Effect of processing factors on glycyrrhizin and glycyrrhizic acid in Glycyrrhiza uralensis Fisch.[J]. Guide China Med (中国医药指南), 2020, 18:177.
[6] Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics[J]. Nat Biotechnol, 2000, 18:1157-1161.
[7] Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’:understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29:1181-1189.
[8] Qiu Y, Reed D. Gas Chromatography in metabolomics study[M]//Guo XH. Advances in Gas Chromatography. London:Intech Open, 2014, 4:83-101.
[9] Duan LX, Dai YT, Sun C, et al. Metabolomics research of medicinal plants[J]. China J Chin Mater Med (中国中药杂志), 2016, 41:4090-4095.
[10] Miao X, Xiao B, Shui S, et al. Metabolomics analysis of serum reveals the effect of Danggui Buxue Tang on fatigued mice induced by exhausting physical exercise[J]. J Pharm Biomed Anal, 2018, 151:301-309.
[11] Wang XJ, Zhang AH, Sun H, et al. Precision diagnosis of Chinese medicine syndrome and evaluation of prescription efficacy based on chinmedomics[J]. World Sci Technol Mod Tradit Chin Med (世界科学技术-中医药现代化), 2017, 19:30-34.
[12] Wang J, Sun Y, Chen LL, et al. Significant changed metabolites in processed products of Polygoni Multiflori Radix based on fingerprint of 1H-NMR[J]. Drugs Clin (现代药物与临床), 2020, 35:1537-1543.
[13] Zhang HM, Li SL, Zhang H, et al. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach[J]. J Pharm Biomed Anal, 2012, 62:258-273.
[14] Wang X, Wang H, Zhang A, et al. Metabolomics study on the toxicity of aconite root and its processed products using ultraperformance liquid-chromatography/electrospray-ionization synapt high-definition mass spectrometry coupled with pattern recognition approach and ingenuity pathways analysis[J]. J Proteome Res, 2012, 11:1284-1301.
[15] Zhang XY, Liu Y, Wu H, et al. Identification of major bioactive components and metabolites of Gandou decoction in rat urine by an integrative approach based on UPLC-Q-TOF-MSE coupled with xenometabolomics analytical platform[J]. Acta Pharm Sin (药学学报), 2020, 55:217-224.
[16] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. 2015 Ed. Vol Ⅰ. Beijing:China Medical Science Press, 2015:87.
[17] Bao F, Bai HY, Wu ZR, et al. Phenolic compounds from cultivated Glycyrrhiza uralensis and their PD-1/PD-L1 inhibitory activities[J]. Nat Prod Res, 2021, 35:562-569.
[18] Kitagawa I, Chen WZ, Hori K, et al. Chemical studies of Chinese licorice-roots. II. Five new flavonoid constituents from the roots of Glycyrrhiza aspera Pall. collected in Xinjiang[J]. Chem Pharm Bull, 1998, 46:1511-1517.
[19] Ji S, Li ZW, Song W, et al. Bioactive constituents of Glycyrrhiza uralensis (licorice):discovery of the effective components of a traditional herbal medicine[J]. J Nat Prod, 2016, 79:281-292.
[20] Li Q, Gao HR, Guo JF. Research progress on main chemical composition and pharmacodynamic activity of Glycyrrhiza uralensis and relationship with environment[J]. Heilongjiang Agric Sci (黑龙江农业科学), 2019, (09):150-154.
[21] Heinemann J. Cluster analysis of untargeted metabolomic experiments[J]. Methods Mol Biol, 2019, 1859:275-285.
[22] Blasco H, Błaszczyński J, Billaut JC, et al. Comparative analysis of targeted metabolomics:dominance-based rough set approach versus orthogonal partial least square-discriminant analysis[J]. J Biomed Inf, 2015, 53:291-299.
[23] Kitagawa I, Hori K, Sakagami M, et al. Saponin and sapogenol. XLVIII. On the constituents of the roots of Glycyrrhiza uralensis Fischer from Northeastern China. (2). Licoricesaponins D3, E2, F3, G2, H2, J2, and K2[J]. Chem Pharm Bull, 1993, 41:1337-1345.
[24] Chen JM. Ben Cao Meng Quan (本草蒙筌)[M]. Beijing:Ancient Chinese Medical Book Press, 2009.
[25] Zhang RH. Effect of different processing conditions on content and variation of epimer and impurities of main components in Glycyrrhiza uralensis[J]. J Sichuan Tradit Chin Med (四川中医), 2019, 37:64-68.
[26] Ota M, Xu F, Li YL, et al. Comparison of chemical constituents among licorice, roasted licorice, and roasted licorice with honey[J]. J Nat Med, 2018, 72:80-95.
[27] Li W, Liu P, Yan X. The influence of soaking time on the content of paeoniflorin[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2006, 17:775-776.
[28] Sui X, Yin J, Ren X. Antiviral effect of diammonium glycyrrhizinate and lithium chloride on cell infection by pseudorabies herpesvirus[J]. Antiviral Res, 2010, 85:346-353.
[29] Li XH, Qi Y, Cai RL, et al. Studies on the anti-inflammatory mechanism of total saponins of Radix Glycyrrhiza in vitro[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2010, 16:110-113.
[30] Abe K, Ikeda T, Wake K, et al. Glycyrrhizin prevents of lipopolysaccharide/D-galactosamine-induced liver injury through down-regulation of matrix metalloproteinase-9 in mice[J]. J Pharm Pharmacol, 2010, 60:91-97.
[31] Hibasami H, Iwase H, Yoshioka K, et al. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells[J]. Int J Mol Med, 2005, 16:233-236.
[32] Rahman S, Sultana S. Glycyrrhizin exhibits potential chemopreventive activity on 12-O-tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in Swiss albino mice[J]. J Enzyme Inhib Med Chem, 2007, 22:363.
[33] Bhangale JO, Chaudhari SR, Shete RV, et al. Antinociceptive and antinflammatory effects of Tectona grandis (L.) bark[J]. Pharmacologyonline, 2010, 2:856-864.
[34] Yang Y, Shi Q, Liu Z, et al. The synergistic anti-asthmatic effects of glycyrrhizin and salbutamol[J]. Acta Pharmacol Sin, 2010, 31:443-449.
[35] Kao TC, Wu CH, Yen GC. Glycyrrhizic acid and 18β-glycyrrhetinic acid recover glucocorticoid resistance via PI3K-induced AP1, CRE and NFAT activation[J]. Phytomedicine, 2013, 20:295-302.
相关文献:
1.葛孚晶, 曾晨鸣, 严芳洁, 钱美佳, 王伟华, 罗沛华, 翁勤洁, 庄让笑, 席建军, 黄劲松, 杨波, 朱虹, 何俏军.甘草酸:一种治疗新型冠状肺炎的潜在药物[J]. 药学学报, 2021,56(5): 1211-1216
2.马生军, 王文全.不同浓度锰处理对甘草 SQS1基因表达及其甘草酸含量影响的分析[J]. 药学学报, 2015,50(1): 111-117
3.陈秀秀, 周红霞, 亓文宝, 宁章勇, 马勇江, 李药兰, 王国才, 陈建新.甘草酸联合利巴韦林体内抗甲型H1N1流感病毒作用[J]. 药学学报, 2015,50(8): 966-972
4.孙润彬, 俞晓忆, 毛勇, 葛纯, 杨娜, 阿基业, 唐于平, 段金廒, 马子腾, 吴旭彤, 朱萱萱, 王广基.昆布-甘草合用对SD大鼠基础代谢干扰的代谢组学研究[J]. 药学学报, 2015,50(3): 312-318
5.刘颖, 陈宏昊, 文浩, 高雅, 王礼强, 刘春生.甘草鲨烯合酶1基因多态性及其与β-香树脂醇合成酶共表达对β-香树脂醇积累的影响研究[J]. 药学学报, 2014,49(5): 734-741
6.赵燕燕, 刘丽艳, 韩媛媛, 李月秋, 王 艳, 石敏健.甘草酸单铵盐原料药主成分异构体及其与有关物质同时分离检测和结构确证[J]. 药学学报, 2013,48(8): 1286-1291
7.吴青青, 陈 彦, 辛 然, 王晋艳, 周 蕾, 袁 菱, 贾晓斌.甘草主成分及其提取物肠吸收差异的多元化分析[J]. 药学学报, 2012,47(5): 657-663
8.周亮;杨劲;张雪莹;柳晓泉;王广基.磷脂对甘草酸二铵小肠吸收的影响[J]. 药学学报, 2008,43(1): 71-75
9.汤慧芳;毛连根;江若安;钱韵;陈季强.甘草酸单铵对脂多糖致小鼠急性肺损伤的保护作用[J]. 药学学报, 2007,42(9): 954-958
10.毛声俊;侯世祥;;张良珂;金辉;毕岳琦;蒋彬.肝细胞靶向甘草酸表面修饰白蛋白纳米粒的制备工艺[J]. 药学学报, 2003,38(10): 787-790
11.杨静;彭仁;孔锐;于皆平;.18α-甘草酸二铵对大鼠肝脏细胞色素P450和II相酶的影响[J]. 药学学报, 2001,36(5): 321-324
12.高晓黎;孙殿甲;邱洪卓.W/O/W型甘草酸单铵盐口服复乳的药物释放研究[J]. 药学学报, 1996,31(1): 68-71
13.曾路;张如意;楼之岑.甘草中三种皂甙类成分的高效液相色谱法分离和含量测定[J]. 药学学报, 1991,26(1): 53-58