药学学报, 2021, 56(5): 1486-1496
引用本文:
刘美琦, 孙伟, 孟祥霄, 万会花, 刘廷霞, 孙嘉莹, 王震, 米要磊, 马伟. 药用植物大麻C2H2基因家族鉴定与表达分析[J]. 药学学报, 2021, 56(5): 1486-1496.
LIU Mei-qi, SUN Wei, MENG Xiang-xiao, WAN Hui-hua, LIU Ting-xia, SUN Jia-ying, WANG Zhen, MI Yao-lei, MA Wei. Identification and expression analysis of the C2H2 gene family in Cannabis sativa L.[J]. Acta Pharmaceutica Sinica, 2021, 56(5): 1486-1496.

药用植物大麻C2H2基因家族鉴定与表达分析
刘美琦1, 孙伟2, 孟祥霄2, 万会花2, 刘廷霞1, 孙嘉莹1, 王震1, 米要磊2*, 马伟1*
1. 黑龙江中医药大学药学院, 黑龙江 哈尔滨 150040;
2. 中国中医科学院中药研究所, 北京 100700
摘要:
C2H2型转录因子在植物生长发育及次生代谢调控中发挥重要作用,本文利用生物信息学从基因组层面鉴定大麻(Cannabis sativa L.)C2H2基因家族成员,基于大麻基因组数据及转录组数据,使用TBtools、MEGA软件以及NCBI、PlantTFDB、ExPASy、HMMSCAN、MEME、WoLFPSORT、PlantCARE等在线网站对其基因信息、染色体定位、进化关系、保守基序、共线性关系等进行分析。结果显示,大麻中含有30个C2H2型基因家族成员(CsC2H2-1~CsC2H2-30),分布在大麻的9条染色体上,氨基酸大小介于138~635个氨基酸,理论等电点介于5.85~9.52,蛋白质分子质量介于15 909.48~68 445.53 Da。转录组结果分析显示,CsC2H2在大麻Diku品种的雌花、苞片、叶、茎及不同品种雌花中表达量均存在差异。实时荧光定量PCR结果验证了CsC2H2-1CsC2H2-5CsC2H2-19在Diku品种的雌花及苞片中表达显著,为深入研究C2H2基因家族功能及大麻优质品种的选育提供理论参考。
关键词:    大麻      C2H2基因家族      生物信息学      系统进化      功能预测     
Identification and expression analysis of the C2H2 gene family in Cannabis sativa L.
LIU Mei-qi1, SUN Wei2, MENG Xiang-xiao2, WAN Hui-hua2, LIU Ting-xia1, SUN Jia-ying1, WANG Zhen1, MI Yao-lei2*, MA Wei1*
1. College of Pharmaceutical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
2. Institute of Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
Abstract:
C2H2 transcription factors play an important role in plant growth, development and the regulation of secondary metabolism. This article identifies members of the C2H2 gene family in Cannabis sativa L. at the genome level. Chromosomal location and linkage, evolutionary relationships, and identification of conserved motifs was determined from the C. sativa genome and transcriptome data using bioinformatics tools and on-line websites such as TBtools, MEGA software, NCBI, PlantTFDB, ExPASy, HMMSCAN, MEME, WoLFPSORT and PlantCARE. The results show that C. sativa contains 30 members of the C2H2 gene family (named CsC2H2-1-CsC2H2-30) distributed on 9 chromosomes. The encoded proteins range in length from 138 to 635 amino acids, and the theoretical isoelectric points range from 5.85 to 9.52. Molecular weights range from 15 909.48 to 68 445.53 Da. Transcriptome analysis showed that CsC2H2 was differentially expressed in the female flowers, bracts, leaves, and stems of the Diku variety and female flowers of nine different varieties of C. sativa. Quantitative real-time PCR verified that CsC2H2-1, CsC2H2-5, and CsC2H2-19 were significantly expressed in the female flowers and bracts of the Diku variety. This provides a theoretical basis for in-depth study of the function of the C2H2 gene family and the breeding of high-quality C. sativa varieties.
Key words:    Cannabis sativa    C2H2 gene family    bioinformatics    phylogeny    functional prediction   
收稿日期: 2020-12-11
DOI: 10.16438/j.0513-4870.2020-1902
基金项目: 中央级公益性科研院所基本科研业务费专项资金资助(ZXKT19019);国家中医药管理局全国中药资源普查项目(GZY-KJS-2018-004).
通讯作者: 米要磊,Tel:86-451-87266988,E-mail:88788891@qq.com;马伟,Tel:86-10-64032658,E-mail:xiaomi20063@sina.com
Email: 88788891@qq.com;xiaomi20063@sina.com
相关功能
PDF(1918KB) Free
打印本文
0
作者相关文章
刘美琦  在本刊中的所有文章
孙伟  在本刊中的所有文章
孟祥霄  在本刊中的所有文章
万会花  在本刊中的所有文章
刘廷霞  在本刊中的所有文章
孙嘉莹  在本刊中的所有文章
王震  在本刊中的所有文章
米要磊  在本刊中的所有文章
马伟  在本刊中的所有文章

参考文献:
[1] Zhang J, Liu JF, Zhao TT, et al. Research progress of C2H2 zinc finger protein in plant[J]. Mol Plant Breed (分子植物育种), 2018, 16:427-433.
[2] Pabo CO, Peisach E, Grant RA. Design and selection of novel Cys2 His2 zinc finger proteins[J]. Annu Rev Biochem, 2001, 70:313-340.
[3] Moore M, Ullman C. Recent developments in the engineering of zinc finger proteins[J]. Brief Funct Genomic Proteomic, 2003, 1:342-355.
[4] Berg JM, Shi Y. The galvanization of biology:a growing appreciation for the roles of zinc[J]. Science, 1996, 271:1081-1085.
[5] Takatsuji H, Mori M, Benfey PN, et al. Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings[J]. EMBO J, 1992, 11:241-249.
[6] Englbrecht CC, Schoof H, Böhm S. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome[J]. BMC Genomics, 2004, 5:39.
[7] Yang ML, Chao JT, Wang DW, et al. Genome-wide identification and expression profiling of the C2H2-type zinc finger protein transcription factor family in tobacco[J]. Hereditas (遗传),2016, 38:337-349.
[8] Hu JH, Wang DW, Yang ML, et al. Identification and bioinformatics analysis of C2H2 zinc finger protein in tomato[J]. Jiangsu Agric Sci (江苏农业科学), 2018, 46:23-27.
[9] Zhang S. Genome-wide Identification and Characterization of Zinc Finger Proteins in Cucumber (黄瓜基因组内锌指蛋白的鉴定及特征分析)[D]. Beijing:Chinese Academy of Agricultural Sciences, 2017.
[10] Agarwal P, Arora R, Ray S, et al. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis[J]. Plant Mol Biol, 2007, 65:467-485.
[11] Liu Q, Wang Z, Xu X, et al. Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in Poplar (Populus trichocarpa)[J]. PLoS One, 2015, 10:e0134753.
[12] Laity JH, Lee BM, Wright PE. Zinc finger proteins:new insights into structural and functional diversity[J]. Curr Opin Struct Biol, 2001, 11:39-46.
[13] Takeda S, Matsumoto N, Okada K. Rabbit ears, encoding a superman-like zinc finger protein, regulates petal development in Arabidopsis thaliana[J]. Development, 2004, 131:425-434.
[14] Zhang X, Zhang B, Li MJ, et al. OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenic Arabidopsis[J]. J Plant Biol, 2016, 59:271-281.
[15] Zhang X, Guo X, Lei C, et al. Overexpression of SlCZFP1, a novel TFIIIA-type zinc finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice[J]. Plant Mol Biol Rep, 2011, 29:185-196.
[16] Hichri I, Muhovski Y, Žižková E, et al. The solanum lycopersicum zinc finger2 cysteine-2/histidine-2 repressor-like transcription factor regulates development and tolerance to salinity in tomato and Arabidopsis[J]. Plant Physiol, 2014, 164:1967-1990.
[17] Li J, Zhu XW, Wan HH, et al. Progress on chemical constituents and analytical methods of cannabinoids in Cannabis sativa[J]. Chin Tradit Herb Drugs (中草药), 2020, 51:6414-6425.
[18] Schultes RE, Klein WM, Plowman T. Cannabis:an example of taxonomic neglect[J]. Bot Museum Leaflets, Harvard Univ, 1974, 23:337-367. http://www.jstor.org/stable/41762285?seq=1&cid=pdf-reference#references_tab_contents.
[19] Ware MA, Wang T, Shapiro S, et al. Smoked cannabis for chronic neuropathic pain:a randomized controlled trial[J]. CMAJ, 2010, 182:E694-E701.
[20] Flores-Sanchez IJ, Choi YH, Verpoorte R. Metabolite analysis of Cannabis sativa L. by NMR spectroscopy[J]. Methods Mol Biol, 2012, 815:363-375.
[21] Preedy V. The Biosynthesis of Cannabinoids[M]//Handbook of Cannabis and Related Pathologies.Chapter 2. San Diego:Academic Press, 2017:13-23.
[22] Chang XW, Chen WQ, Sun Y, et al. Potential medical use and risks of cannabis[J]. Chin J Drug Depend (中国药物依赖性杂志), 2020, 29:161-168.
[23] Rácz I, Nent E, Erxlebe E, et al. CB1 receptors modulate affective behaviour induced by neuropathic pain[J]. Brain Res Bull, 2015, 114:42-48.
[24] Romero-Sandoval EA, Kolano AL, Alvarado-Vázquez PA. Cannabis and cannabinoids for chronic pain[J]. Curr Rheumatol Rep, 2017, 19:67.
[25] Cristino L, Bisogno T, Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders[J]. Nat Rev Neurol, 2019, 16:9-29.
[26] Chopra K, Arora V. An intricate relationship between pain and depression:clinical correlates, coactivation factors and therapeutic targets[J]. Expert Opin Ther Targets, 2014, 18:159-176.
[27] Zhang JQ, Chen SL, Wei GF, et al. Cultivars breeding and production of non-psychoactive medicinal cannabis with high CBD content[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:4772-4780.
[28] Rodriguez de Fonseca F, Cebeira M, Hernández ML, et al. Changes in brain dopaminergic indices induced by perinatal exposure to cannabinoids in rats[J]. Dev Brain Res, 1990, 51:237-240.
[29] Bergamaschi MM, Queiroz RH, Chagas MH, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients[J]. Neuropsychopharmacology, 2011, 36:1219-1226.
[30] Levin R, Peres FF, Almeida V, et al. Effects of cannabinoid drugs on the deficit of prepulse inhibition of startle in an animal model of schizophrenia:the SHR strain[J]. Front Pharmacol, 2014, 5:10.
[31] Luo X, Reiter MA, d'Espaux L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567:123-126.
[32] Li QS, Meng Y, Chen SL. A new Cannabis germplasm classification system and research strategies of non-psychoactive medicinal cannabis[J]. China J Chin Mater Med (中国中药杂志), 2019, 44:4309-4316.
[33] Grassa CJ, Wenger JP, Dabney C, et al. A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content[J]. BioRxiv, 2018. DOI:10.1101/458083.
[34] Zager JJ, Lange I, Srividya N, et al. Gene networks underlying cannabinoid and terpenoid accumulation in Cannabis[J]. Plant Physiol, 2019, 180:1877-1897.
[35] Chen C, Xia R, Chen H, et al. TBtools, a toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface[J]. BioRxiv, 2018. DOI:10.1101/289660.
[36] Lee BM, Xu J, Clarkson BK, et al. Induced fit and "lock and key" recognition of 5 S RNA by zinc fin-gers of transcription factor IIIA[J]. J Mol Biol, 2006, 357:275-291.
[37] Takatsuji H. Zinc-finger transcription factors in plants[J]. Cell Mol Life Sci, 1998, 54:582-596.
[38] Sakamoto H, Araki T, Meshi T, et al. Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress[J]. Gene, 2000, 248:23-32.
[39] Li XP, Yu MX, Kuang TR, et al. Research progress on the antitumor effect of flavonoid derivatives[J]. Acta Pharm Sin (药学学报), 2021, 56:913-923.
[40] Li MR, Zhou YZ, Du GH, et al. Research progress about the anti-aging effect and mechanism of flavonoids from traditional Chinese medicine[J]. Acta Pharm Sin (药学学报), 2019, 54:1382-1391.
[41] Harborne JB, Williams CA. Anthocyanins and other flavonoids[J]. Nat Prod Rep, 2001, 18:310-333.
[42] Shi H, Liu G, Wei Y, et al. The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis[J]. Plant Mol Biol, 2018, 97:165-176.