药学学报, 2021, 56(6): 1513-1520
引用本文:
张芳, 王晓良*. 血液载脂蛋白作为神经退行性疾病潜在生物标志物的研究[J]. 药学学报, 2021, 56(6): 1513-1520.
ZHANG Fang, WANG Xiao-liang*. Study on blood apolipoprotein as a potential biomarker of neurodegenerative diseases[J]. Acta Pharmaceutica Sinica, 2021, 56(6): 1513-1520.

血液载脂蛋白作为神经退行性疾病潜在生物标志物的研究
张芳, 王晓良*
中国医学科学院、北京协和医学院药物研究所, 北京 100050
摘要:
神经退行性疾病(neurodegenerative diseases,ND)主要包括阿尔茨海默病、帕金森病、多发性硬化症、肌萎缩侧索硬化症和共济失调等疾病。神经退行性疾病患者人数不断增长,但能早期诊治的患者比例不到30%,并且ND的发病原因目前仍不明确。为了尽早对疾病进行干预,研究者们致力于寻找便于早期诊断ND的生物标志物。其中,脑脊液(cerebrospinal fluid,CSF)真实反映了脑细胞外空间的组成,可能是评价ND的最灵敏的生物标记物。但取脑脊液的方法比较复杂,在治疗ND患者的初级护理或老年医疗机构中不是一个普遍的方法。影像学检查价格高昂,难以在社区人群中普及。而外周血采集方便、创伤小和费用低,是具有潜力的早期筛查和随诊手段。血液中有多种成分可供分析研究,本文就ND患者血液中载脂蛋白的变化作为标志物的研究进展进行综述。
关键词:    神经退行性疾病      阿尔茨海默病      帕金森病      多发性硬化症      肌萎缩侧索硬化症      共济失调      血液生物标志物      载脂蛋白     
Study on blood apolipoprotein as a potential biomarker of neurodegenerative diseases
ZHANG Fang, WANG Xiao-liang*
Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Neurodegenerative diseases (ND) mainly include Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, ataxia, and other diseases. The number of patients with ND is increasing, but the proportion of patients who can be diagnosed and treated early is less than 30% and the cause of ND is still unclear. In order to intervene in the disease as early as possible, researchers are committed to finding biomarkers that facilitate the early diagnosis of ND. Among them, cerebrospinal fluid (CSF) closely reflects the composition of the extracellular space of the brain, and may be the most sensitive biomarker for evaluating ND. However, the method of taking cerebrospinal fluid is more complicated, and it is not a common method in primary care or elderly medical institutions for the treatment of ND patients. Imaging examinations are expensive and difficult to spread among the community. The peripheral blood collection is convenient and less traumatic, which is a potential early screening and follow-up method. There are many components in the blood for analysis and research. This article reviews the research progress of the changes of apolipoprotein in the blood of ND patients as markers.
Key words:    neurodegenerative disease    Alzheimer's disease    Parkinson's disease    multiple sclerosis    amyotrophic lateral sclerosis    ataxia    blood biomarker    apolipoprotein   
收稿日期: 2021-05-17
DOI: 10.16438/j.0513-4870.2021-0746
基金项目: 中国医学科学院医学与健康科技创新工程(2020-I2M-1-003).
通讯作者: 王晓良,Tel:86-10-63165330,E-mail:wangxl@imm.ac.cn
Email: wangxl@imm.ac.cn
相关功能
PDF(1283KB) Free
打印本文
0
作者相关文章
张芳  在本刊中的所有文章
王晓良*  在本刊中的所有文章

参考文献:
[1] Rong XF, Wang XL. An overview of biomarkers in Alzheimer's disease[J]. Acta Pharm Sin (药学学报), 2012, 47: 551-557.
[2] Xu TT, Guo P, Zhang W, et al. Serum biomarkers and bioinformatics of Alzheimer's disease based on LC-MS/MS proteomics[J]. Acta Pharm Sin (药学学报), 2020, 55: 1604-1613.
[3] Yang Q, Zhao Q, Yin Y. miR-133b is a potential diagnostic biomarker for Alzheimer's disease and has a neuroprotective role[J]. Exp Ther Med, 2019, 18: 2711-2718.
[4] Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's disease early diagnosis[J]. J Pers Med, 2020, 10: 114.
[5] Lu W, Wan X, Liu B, et al. Specific changes of serum proteins in Parkinson's disease patients[J]. PLoS One, 2014, 9: e95684.
[6] Housley WJ, Pitt D, Hafler DA. Biomarkers in multiple sclerosis[J]. Clin Immunol, 2015, 161: 51-58.
[7] Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study[J]. BMJ, 2001, 322: 1447-1451.
[8] Song F, Poljak A, Crawford J, et al. Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals[J]. PLoS One, 2012, 7: e34078.
[9] Asztalos BF, Schaefer EJ. High-density lipoprotein subpopulations in pathologic conditions[J]. Am J Cardiol, 2003, 91: 12e-17e.
[10] Schaefer EJ, Santos RD, Asztalos BF. Marked HDL deficiency and premature coronary heart disease[J]. Curr Opin Lipidol, 2010, 21: 289-297.
[11] Koldamova RP, Lefterov IM, Lefterova MI, et al. Apolipoprotein A-I directly interacts with amyloid precursor protein and inhibits A beta aggregation and toxicity[J]. Biochemistry, 2001, 40: 3553-3560.
[12] Liu S, Suzuki H, Ito H, et al. Serum levels of proteins involved in amyloid-β clearance are related to cognitive decline and neuroimaging changes in mild cognitive impairment[J]. Alzheimers Dement, 2019, 11: 85-97.
[13] Kuriyama M, Takahashi K, Yamano T, et al. Low levels of serum apolipoprotein A I and A II in senile dementia[J]. JPN J Psychiatry Neurol, 1994, 48: 589-593.
[14] Merched A, Xia Y, Visvikis S, et al. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer's disease[J]. Neurobiol Aging, 2000, 21: 27-30.
[15] Fan P, Liu Y, Zhang Z, et al. Serum apolipoprotein A I, B100 and E levels and apolipoprotein E polymorphism in patients with Alzheimer's disease and multiple infarction dementia in Chinese population[J]. J West China Univ Med Sci (华西医科大学学报), 2001, 32: 389-391.
[16] Liu HC, Hu CJ, Chang JG, et al. Proteomic identification of lower apolipoprotein A-I in Alzheimer's disease[J]. Dement Geriatr Cogn Disord, 2006, 21: 155-161.
[17] Lin Q, Cao Y, Gao J. Decreased expression of the ApoA1-ApoC3-ApoA4 gene cluster is associated with risk of Alzheimer's disease[J]. Drug Des Devel Ther, 2015, 9: 5421-5431.
[18] Uchida K, Shan L, Suzuki H, et al. Amyloid-β sequester proteins as blood-based biomarkers of cognitive decline[J]. Alzheimers Dement, 2015, 1: 270-280.
[19] Kitamura Y, Usami R, Ichihara S, et al. Plasma protein profiling for potential biomarkers in the early diagnosis of Alzheimer's disease[J]. Neurol Res, 2017, 39: 231-238.
[20] Raygani AV, Rahimi Z, Kharazi H, et al. Association between apolipoprotein E polymorphism and serum lipid and apolipoprotein levels with Alzheimer's disease[J]. Neurosci Lett, 2006, 408: 68-72.
[21] Zhao C, Yu HY, Zhang J, et al. Study on biological indexes for early screening and prediction of dementia in the community elderly[J]. Chin J Neuroimmunol Neurol (中国神经免疫学和神经病学杂志), 2018, 25: 102-107.
[22] Fania C, Arosio B, Capitanio D, et al. Protein signature in cerebrospinal fluid and serum of Alzheimer's disease patients: the case of apolipoprotein A-1 proteoforms[J]. PLoS One, 2017, 12: e0179280.
[23] Choi HJ, Seo EH, Yi D, et al. Amyloid-independent amnestic mild cognitive impairment and serum apolipoprotein A1 levels[J]. Am J Geriatr Psychiatry, 2016, 24: 144-153.
[24] Ya L, Lu Z. Differences in ABCA1 R219K polymorphisms and serum indexes in Alzheimer and Parkinson diseases in northern China[J]. Med Sci Monit, 2017, 23: 4591-4600.
[25] Kawano M, Kawakami M, Otsuka M, et al. Marked decrease of plasma apolipoprotein AI and AII in Japanese patients with late-onset non-familial Alzheimer's disease[J]. Clin Chim Acta, 1995, 239: 209-211.
[26] Yang MH, Yang YH, Lu CY, et al. Activity-dependent neuroprotector homeobox protein: a candidate protein identified in serum as diagnostic biomarker for Alzheimer's disease[J]. J Proteomics, 2012, 75: 3617-3629.
[27] Utermann G. Isolation and partial characterization of an arginine-rich apolipoprotein from human plasma very-low-density lipoproteins: apolipoprotein E[J]. Hoppe Seylers Z Physiol Chem, 1975, 356: 1113-1121.
[28] Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families[J]. Science, 1993, 261: 921-923.
[29] Strittmatter WJ, Weisgraber KH, Huang DY, et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease[J]. Proc Natl Acad Sci U S A, 1993, 90: 8098-8102.
[30] Poirier J, Bertrand P, Kogan S, et al. Apolipoprotein E polymorphism and Alzheimer's disease[J]. Lancet, 1993, 342: 697-699.
[31] Han SH, Kim JS, Lee Y, et al. Both targeted mass spectrometry and flow sorting analysis methods detected the decreased serum apolipoprotein E level in Alzheimer's disease patients[J]. Mol Cell Proteomics, 2014, 13: 407-419.
[32] Zhang R, Barker L, Pinchev D, et al. Mining biomarkers in human sera using proteomic tools[J]. Proteomics, 2004, 4: 244-256.
[33] Blanchard V, Ramin-Mangata S, Billon-Crossouard S, et al. Kinetics of plasma apolipoprotein E isoforms by LC-MS/MS: a pilot study[J]. J Lipid Res, 2018, 59: 892-900.
[34] Patra K, Giannisis A, Edlund AK, et al. Plasma apolipoprotein E monomer and dimer profile and relevance to Alzheimer's disease[J]. J Alzheimers Dis, 2019, 71: 1217-1231.
[35] Prendecki M, Florczak-Wyspianska J, Kowalska M, et al. ApoE genetic variants and apoE, miR-107 and miR-650 levels in Alzheimer's disease[J]. Folia Neuropathol, 2019, 57: 106-116.
[36] Vance JE, Hayashi H. Formation and function of apolipoprotein E-containing lipoproteins in the nervous system[J]. Biochim Biophys Acta, 2010, 1801: 806-818.
[37] Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer's disease[J]. Lancet, 2016, 388: 505-517.
[38] Zverova M, Kitzlerova E, Fisar Z, et al. Interplay between the ApoE genotype and possible plasma biomarkers in Alzheimer's disease[J]. Curr Alzheimer Res, 2018, 15: 938-950.
[39] Bu G. Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy[J]. Nat Rev Neurosci, 2009, 10: 333-344.
[40] Corder E, Saunders AM, Risch N, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease[J]. Nat Genet, 1994, 7: 180-184.
[41] Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis[J]. JAMA, 1997, 278: 1349-1356.
[42] Martinez M, Brice A, Vaughan JR, et al. Apolipoprotein E4 is probably responsible for the chromosome 19 linkage peak for Parkinson's disease[J]. Am J Med Genet B Neuropsychiatr Gene, 2005, 136B: 72-74.
[43] Masterman T, Hillert J. The telltale scan: ApoE ɛ4 in multiple sclerosis[J]. Lancet Neurol, 2004, 3: 331.
[44] Montañola A, de Retana SF, López-Rueda A, et al. ApoA1, ApoJ and ApoE plasma levels and genotype frequencies in cerebral amyloid angiopathy[J]. Neuromolecular Med, 2016, 18: 99-108.
[45] Wang P, Zhang H, Wang Y, et al. Plasma cholesterol in Alzheimer's disease and frontotemporal dementia[J]. Transl Neurosci, 2020, 11: 116-123.
[46] Grossi MF, Carvalho MDG, Silveira JN, et al. OxLDL plasma levels in patients with Alzheimer's disease[J]. Arq Neuropsiquiatr, 2018, 76: 241-246.
[47] de Silva HV, Stuart WD, Park YB, et al. Purification and characterization of apolipoprotein J[J]. J Biol Chem, 1990, 265: 14292-14297.
[48] de Silva HV, Stuart WD, Duvic CR, et al. A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins[J]. J Biol Chem, 1990, 265: 13240-13247.
[49] Zlokovic BV, Martel CL, Matsubara E, et al. Glycoprotein 330/megalin: probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer disease amyloid beta at the blood-brain and blood-cerebrospinal fluid barriers[J]. Proc Natl Acad Sci U S A, 1996, 93: 4229-4234.
[50] Bell RD, Sagare AP, Friedman AE, et al. Transport pathways for clearance of human Alzheimer's amyloid β-peptide and apolipoproteins E and J in the mouse central nervous system[J]. J Cereb Blood Flow Metab, 2007, 27: 909-918.
[51] Nuutinen T, Suuronen T, Kauppinen A, et al. Clusterin: a forgotten player in Alzheimer's disease[J]. Brain Res Rev, 2009, 61: 89-104.
[52] DeMattos RB, Cirrito JR, Parsadanian M, et al. ApoE and clusterin cooperatively suppress Aβ levels and deposition: evidence that ApoE regulates extracellular Aβ metabolism in vivo[J]. Neuron, 2004, 41: 193-202.
[53] Montoliu-Gaya L, Mulder SD, Herrebout MAC, et al. Aβ-oligomer uptake and the resulting inflammatory response in adult human astrocytes are precluded by an anti-Aβ single chain variable fragment in combination with an ApoE mimetic peptide[J]. Mol Cell Neurosci, 2018, 89: 49-59.
[54] Gupta VB, Hone E, Pedrini S, et al. Altered levels of blood proteins in Alzheimer's disease longitudinal study: results from Australian imaging biomarkers lifestyle study of ageing cohort[J]. Alzheimers Dement, 2017, 8: 60-72.
[55] Rosenberg ME, Silkensen J. Clusterin: physiologic and pathophysiologic considerations[J]. Int J Biochem Cell Biol, 1995, 27: 633-645.
[56] Caramelli P, Nitrini R, Maranhão R, et al. Increased apolipoprotein B serum concentration in Alzheimer's disease[J]. Acta Neurol Scand, 1999, 100: 61-63.
[57] Giubilei F, D'Antona R, Antonini R, et al. Serum lipoprotein pattern variations in dementia and ischemic stroke[J]. Acta Neurol Scand, 1990, 81: 84-86.
[58] Keener AM, Bordelon YM. Parkinsonism[J]. Semin Neurol, 2016, 36: 330-334.
[59] Mollenhauer B, Rochester L, Chen-Plotkin A, et al. What can biomarkers tell us about cognition in Parkinson's disease?[J]. Mov Disord, 2014, 29: 622-633.
[60] Maarouf CL, Beach TG, Adler CH, et al. Cerebrospinal fluid biomarkers of neuropathologically diagnosed Parkinson's disease subjects[J]. Neurol Res, 2012, 34: 669-676.
[61] Ordoñez C, Navarro A, Perez C, et al. Apolipoprotein D expression in substantia nigra of Parkinson disease[J]. Histol Histopathol, 2006, 21: 361-366.
[62] Tsuang D, Leverenz JB, Lopez OL, et al. ApoE ε4 increases risk for dementia in pure synucleinopathies[J]. JAMA Neurol, 2013, 70: 223-228.
[63] Irwin DJ, White MT, Toledo JB, et al. Neuropathologic substrates of Parkinson disease dementia[J]. Ann Neurol, 2012, 72: 587-598.
[64] Swanson CR, Berlyand Y, Xie SX, et al. Plasma apolipoprotein A1 associates with age at onset and motor severity in early Parkinson's disease patients[J]. Mov Disord, 2015, 30: 1648-1656.
[65] Qiang JK, Wong YC, Siderowf A, et al. Plasma apolipoprotein A1 as a biomarker for Parkinson disease[J]. Ann Neurol, 2013, 74: 119-127.
[66] Zhang X, Yin X, Yu H, et al. Quantitative proteomic analysis of serum proteins in patients with Parkinson's disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry[J]. Analyst, 2012, 137: 490-495.
[67] Rahmani F, Aarabi MH. Does apolipoprotein A1 predict microstructural changes in subgenual cingulum in early Parkinson?[J]. J Neurol, 2017, 264: 684-693.
[68] Ikeda T, Sugiuchi H, Senba U, et al. Preliminary findings on the variation of serum apolipoprotein levels in neural degenerative disorders[J]. J Clin Lab Anal, 1993, 7: 1-4.
[69] Keeney JT, Swomley AM, Förster S, et al. Apolipoprotein A-I: insights from redox proteomics for its role in neurodegeneration[J]. Proteomics Clin Appl, 2013, 7: 109-122.
[70] Přikrylová Vranová H, Mareš J, Nevrlý M, et al. CSF markers of neurodegeneration in Parkinson's disease[J]. J Neural Transm, 2010, 117: 1177-1181.
[71] Sasaki K, Doh-ura K, Wakisaka Y, et al. Clusterin/apolipoprotein J is associated with cortical Lewy bodies: immunohistochemical study in cases with alpha-synucleinopathies[J]. Acta Neuropathol, 2002, 104: 225-230.
[72] Niccoli Asabella A, Ruggeri M, Rubini D, et al. Correlation between cognitive impairment and plasma levels of clusterin/ApoJ in Parkinson disease patients not affected by dementia[J]. Recenti Prog Med, 2013, 104: 393-397.
[73] Vranová HP, Hényková E, Kaiserová M, et al. Tau protein, beta-amyloid₁₋₄₂ and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia[J]. J Neurol Sci, 2014, 343: 120-124.
[74] Li L, Liu MS, Li GQ, et al. Relationship between apolipoprotein superfamily and Parkinson's disease[J]. Chin Med J, 2017, 130: 2616-2623.
[75] Doshi A, Chataway J. Multiple sclerosis, a treatable disease[J]. Clin Med, 2016, 16: s53-s59.
[76] Zhang B, Pu S, Li B, et al. Comparison of serum apolipoprotein A-I between Chinese multiple sclerosis and other related autoimmune disease[J]. Lipids Health Dis, 2010, 9: 34.
[77] McComb M, Krikheli M, Uher T, et al. Neuroprotective associations of apolipoproteins A-I and A-II with neurofilament levels in early multiple sclerosis[J]. J Clin Lipidol, 2020, 14: 675-684.e2.
[78] Meyers L, Groover CJ, Douglas J, et al. A role for apolipoprotein A-I in the pathogenesis of multiple sclerosis[J]. J Neuroimmunol, 2014, 277: 176-185.
[79] Sena A, Pedrosa R, Ferret-Sena V, et al. Interferon beta1a therapy changes lipoprotein metabolism in patients with multiple sclerosis[J]. Clin Chem Lab Med, 2000, 38: 209-213.
[80] Gelman BB, Rifai N, Christenson RH, et al. Cerebrospinal fluid and plasma apolipoproteins in patients with multiple sclerosis[J]. Ann Clin Lab Sci, 1988, 18: 46-52.
[81] Murali N, Browne RW, Fellows Maxwell K, et al. Cholesterol and neurodegeneration: longitudinal changes in serum cholesterol biomarkers are associated with new lesions and gray matter atrophy in multiple sclerosis over 5 years of follow-up[J]. Eur J Neurol, 2020, 27: 188-e4.
[82] Fellows K, Uher T, Browne RW, et al. Protective associations of HDL with blood-brain barrier injury in multiple sclerosis patients[J]. J Lipid Res, 2015, 56: 2010-2018.
[83] Bonafede R, Mariotti R. ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles[J]. Front Cell Neurosci, 2017, 11: 80.
[84] Bouteloup C, Desport JC, Clavelou P, et al. Hypermetabolism in ALS patients: an early and persistent phenomenon[J]. J Neurol, 2009, 256: 1236-1242.
[85] Ferri A, Coccurello R. What is "hyper" in the ALS hypermetabolism?[J]. Mediators Inflamm, 2017, 2017: 7821672.
[86] Ngo ST, Steyn FJ. The interplay between metabolic homeostasis and neurodegeneration: insights into the neurometabolic nature of amyotrophic lateral sclerosis[J]. Cell Regen, 2015, 4: 5.
[87] Schmitt F, Hussain G, Dupuis L, et al. A plural role for lipids in motor neuron diseases: energy, signaling and structure[J]. Front Cell Neurosci, 2014, 8: 25.
[88] Mariosa D, Hammar N, Malmström H, et al. Blood biomarkers of carbohydrate, lipid, and apolipoprotein metabolisms and risk of amyotrophic lateral sclerosis: a more than 20-year follow-up of the Swedish AMORIS cohort[J]. Ann Neurol, 2017, 81: 718-728.
[89] Walldius G. The ApoB/ApoA-I Ratio Is A Strong Predictor of Cardiovascular Risk[M]. Sweden: Lipoproteins in Health and Diseases, 2012: 95-148.
[90] Akbar U, Ashizawa T. Ataxia[J]. Neurol Clin, 2015, 33: 225-248.
[91] Kuo SH. Ataxia[J]. Continuum, 2019, 25: 1036-1054.
[92] Pandolfo M. Friedreich's ataxia: clinical aspects and pathogenesis[J]. Semin Neurol, 1999, 19: 311-321.
[93] Koutnikova H, Campuzano V, Foury F, et al. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin[J]. Nat Genet, 1997, 16: 345-351.
[94] Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes[J]. Hum Mol Genet, 1997, 6: 1771-1780.
[95] Wang Q, Guo L, Strawser CJ, et al. Low apolipoprotein A-I levels in Friedreich's ataxia and in frataxin-deficient cells: implications for therapy[J]. PLoS One, 2018, 13: e0192779.
[96] Raman SV, Phatak K, Hoyle JC, et al. Impaired myocardial perfusion reserve and fibrosis in Friedreich ataxia: a mitochondrial cardiomyopathy with metabolic syndrome[J]. Eur Heart J, 2011, 32: 561-567.
[97] Payne RM, Wagner GR. Cardiomyopathy in Friedreich ataxia: clinical findings and research[J]. J Child Neurol, 2012, 27: 1179-1186.
[98] Weidemann F, Störk S, Liu D, et al. Cardiomyopathy of Friedreich ataxia[J]. J Neurochem, 2013, 126 Suppl 1: 88-93.
[99] Koeppen AH, Ramirez RL, Becker AB, et al. The pathogenesis of cardiomyopathy in Friedreich ataxia[J]. PLoS One, 2015, 10: e0116396.
[100] Baldo-Enzi G, Bernardo M, Vitale E, et al. Serum lipids, lipoprotein analysis and apoprotein A-I, A-II and B levels in Friedreich's ataxia[J]. Eur Neurol, 1990, 30: 132-137.
[101] Sun YM, Lu C, Wu ZY. Spinocerebellar ataxia: relationship between phenotype and genotype - a review[J]. Clin Genet, 2016, 90: 305-314.
[102] Bettencourt C, Raposo M, Kazachkova N, et al. The ApoE ε2 allele increases the risk of earlier age at onset in Machado-Joseph disease[J]. Arch Neurol, 2011, 68: 1580-1583.
[103] Raposo M, Bettencourt C, Ramos A, et al. Promoter variation and expression levels of inflammatory genes IL1A, IL1B, IL6 and TNF in blood of spinocerebellar ataxia type 3(SCA3) patients[J]. Neuromolecular Med, 2017, 19: 41-45.
[104] Peng H, Wang C, Chen Z, et al. APOE ε2 allele may decrease the age at onset in patients with spinocerebellar ataxia type 3 or Machado-Joseph disease from the Chinese Han population[J]. Neurobiol Aging, 2014, 35: 2179.e15-8.
[105] Zhou Q, Ni W, Dong Y, et al. The role of apolipoprotein E as a risk factor for an earlier age at onset for Machado-Joseph disease is doubtful[J]. PLoS One, 2014, 9: e111356.
相关文献:
1.王志桐, 王晓良.线粒体阴离子通道VDAC1作为阿尔茨海默病潜在药物靶标的研究进展[J]. 药学学报, 2018,53(8): 1250-1258
2.肖梦洁, 孙平, 胡文辉.基于小胶质细胞功能障碍的阿尔茨海默病药物研发[J]. 药学学报, 2017,52(11): 1660-1666
3.臧彩霞, 鲍秀琦, 孙华, 张丹.神经炎症调控靶点在帕金森病治疗中的作用[J]. 药学学报, 2016,51(5): 677-683
4.杨盛, 何然, 张飞燕, 薛强, 徐晓玉.细胞共培养模型及其在中枢神经系统疾病研究中的应用[J]. 药学学报, 2016,51(3): 338-346
5.赵香玉, 王耀, 王贵彬, 张建军.阿尔茨海默病与铁稳态失常及相关药物研发现状[J]. 药学学报, 2016,51(6): 866-872
6.范 丽 蒋新国.脑部重大疾病的基因治疗研究进展[J]. 药学学报, 2010,45(9): 1095-1102
7.李丽波;刘耕陶.硫氧还蛋白的生物学及其与阿尔茨海默病和帕金森病的关系[J]. 药学学报, 2008,43(1): 1-1