药学学报, 2021, 56(6): 1521-1531
引用本文:
王婉玉, 吕晓希, 胡卓伟, 刘姗姗*. 趋化因子及其受体在乳腺癌中的研究进展[J]. 药学学报, 2021, 56(6): 1521-1531.
WANG Wan-yu, L� Xiao-xi, HU Zhuo-wei, LIU Shan-shan*. Research progress of chemokines and their receptors in breast cancer[J]. Acta Pharmaceutica Sinica, 2021, 56(6): 1521-1531.

趋化因子及其受体在乳腺癌中的研究进展
王婉玉, 吕晓希, 胡卓伟, 刘姗姗*
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
趋化因子是一类具有趋化活性的细胞因子,参与调节机体的免疫应答和炎症反应。它们作为一种多功能介质,不仅影响免疫细胞向肿瘤浸润,在肿瘤的生长、血管生成和侵袭转移等方面也发挥重要作用,是目前肿瘤治疗的重要靶点。本文回顾了趋化因子参与调控的信号通路,分析了趋化因子在乳腺癌发生发展中的作用机制,总结了近年来趋化因子及其受体相关的乳腺癌靶向药物,并对趋化因子在抗乳腺癌治疗中的作用进行了展望。
关键词:    趋化因子      乳腺癌      信号通路      靶向治疗     
Research progress of chemokines and their receptors in breast cancer
WANG Wan-yu, L� Xiao-xi, HU Zhuo-wei, LIU Shan-shan*
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Chemokines are small cytokines with chemotactic activity, they are involved in regulating immune responses and inflammatory responses. In the development of tumors, chemokines are multi-functional mediators that not only affect the infiltration of immune cells into the tumor, but also have an important impact on tumor growth, angiogenesis, invasion, and metastasis. Besides, they are important targets of tumor therapy. Here we review chemokines involved in the regulation of signaling pathways, analyze the mechanism of chemokines in the development of breast cancer, summarize the chemokines targeted drugs for breast cancer in recent years and make a prospect about the role of chemokines in anti-breast cancer therapy.
Key words:    chemokine    breast cancer    signaling    targeted therapy   
收稿日期: 2020-12-30
DOI: 10.16438/j.0513-4870.2020-1996
基金项目: 国家自然科学基金资助项目(81803604).
通讯作者: 刘姗姗,Tel:86-10-83165034,E-mail:shanshan@imm.ac.cn
Email: shanshan@imm.ac.cn
相关功能
PDF(2178KB) Free
打印本文
0
作者相关文章
王婉玉  在本刊中的所有文章
吕晓希  在本刊中的所有文章
胡卓伟  在本刊中的所有文章
刘姗姗*  在本刊中的所有文章

参考文献:
[1] Lata S, Raghava GP. Prediction and classification of chemokines and their receptors[J]. Protein Eng Des Sel, 2009, 22: 441-444.
[2] Kabashima R, Sugita K, Sawada Y, et al. Increased circulating Th17 frequencies and serum IL-22 levels in patients with acute generalized exanthematous pustulosis[J]. J Eur Acad Dermatol Venereol, 2011, 25: 485-488.
[3] Giri J, Das R, Nylen E, et al. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury[J]. Cell Rep, 2020, 30: 1923-1934.e1924.
[4] Liu ZC, Wang ZL, Huang CY, et al. Duhuo Jisheng Decoction inhibits SDF-1-induced inflammation and matrix degradation in human degenerative nucleus pulposus cells in vitro through the CXCR4/NF-κB pathway[J]. Acta Pharmacol Sin, 2018, 39: 912-922.
[5] Zhao XP, Huang YY, Huang Y, et al. Transforming growth factor-beta1 upregulates the expression of CXC chemokine receptor 4(CXCR4) in human breast cancer MCF-7 cells[J]. Acta Pharmacol Sin, 2010, 31: 347-354.
[6] Benson C E, Southgate L. The DOCK protein family in vascular development and disease[J]. Angiogenesis, 2021. DOI: 10.1007/s10456-021-09768-8.
[7] Gilman AG. G proteins: transducers of receptor-generated signals[J]. Annu Rev Biochem, 1987, 56: 615-649.
[8] Cojoc M, Peitzsch C, Trautmann F, et al. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis[J]. Onco Targets Ther, 2013, 6: 1347-1361.
[9] Gao LF, Xu DQ, Wen LJ, et al. Inhibition of STAT3 expression by siRNA suppresses growth and induces apoptosis in laryngeal cancer cells[J]. Acta Pharmacol Sin, 2005, 26: 377-383.
[10] Verma NK, Davies AM, Long A, et al. STAT3 knockdown by siRNA induces apoptosis in human cutaneous T-cell lymphoma line Hut78via downregulation of Bcl-xL[J]. Cell Mol Biol Lett, 2010, 15: 342-355.
[11] Yokogami K, Yamashita S, Takeshima H. Hypoxia-induced decreases in SOCS3 increase STAT3 activation and upregulate VEGF gene expression[J]. Brain Tumor Pathol, 2013, 30: 135-143.
[12] Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment[J]. Nat Rev Immunol, 2007, 7: 41-51.
[13] Kunigal S, Lakka SS, Sodadasu PK, et al. Stat3-siRNA induces Fas-mediated apoptosis in vitro and in vivo in breast cancer[J]. Int J Oncol, 2009, 34: 1209-1220.
[14] Wang T, Niu G, Kortylewski M, et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells[J]. Nat Med, 2004, 10: 48-54.
[15] Niu G, Wright KL, Ma Y, et al. Role of Stat3 in regulating p53 expression and function[J]. Mol Cell Biol, 2005, 25: 7432-7440.
[16] Mellado M, Rodríguez-Frade JM, Mañes S, et al. Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation[J]. Annu Rev Immunol, 2001, 19: 397-421.
[17] Vila-Coro AJ, Rodríguez-Frade JM, Martín De Ana A, et al. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway[J]. FASEB J, 1999, 13: 1699-1710.
[18] Soldevila G, Licona I, Salgado A, et al. Impaired chemokine-induced migration during T-cell development in the absence of Jak 3[J]. Immunology, 2004, 112: 191-200.
[19] Pérez-Rivero G, Cascio G, Soriano SF, et al. Janus kinases 1 and 2 regulate chemokine-mediated integrin activation and naïve T-cell homing[J]. Eur J Immunol, 2013, 43: 1745-1757.
[20] Huang L, Ma B, Ma J, et al. Fractalkine/CX3CR1 axis modulated the development of pancreatic ductal adenocarcinoma via JAK/STAT signaling pathway[J]. Biochem Biophys Res Commun, 2017, 493: 1510-1517.
[21] Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease[J]. Cell, 2017, 170: 605-635.
[22] Vasan N, Toska E, Scaltriti M. Overview of the relevance of PI3K pathway in HR-positive breast cancer[J]. Ann Oncol, 2019, 30 Suppl 10: x3-x11.
[23] Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis[J]. Front Mol Neurosci, 2011, 4: 51.
[24] Pompura SL, Dominguez-Villar M. The PI3K/AKT signaling pathway in regulatory T-cell development, stability, and function[J]. J Leukoc Biol, 2018, 103: 1065-1076.
[25] Liu GT, Chen HT, Tsou HK, et al. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells[J]. Oncotarget, 2014, 5: 10718-10731.
[26] Wang J, Zhang X, Thomas SM, et al. Chemokine receptor 7 activates phosphoinositide-3 kinase-mediated invasive and prosurvival pathways in head and neck cancer cells independent of EGFR[J]. Oncogene, 2005, 24: 5897-5904.
[27] Zhu Z, Zhang X, Guo H, et al. CXCL13-CXCR5 axis promotes the growth and invasion of colon cancer cells via PI3K/AKT pathway[J]. Mol Cell Biochem, 2015, 400: 287-295.
[28] Ma JC, Sun XW, Su H, et al. Fibroblast-derived CXCL12/SDF-1α promotes CXCL6 secretion and co-operatively enhances metastatic potential through the PI3K/Akt/mTOR pathway in colon cancer[J]. World J Gastroenterol, 2017, 23: 5167-5178.
[29] Shen T, Yang Z, Cheng X, et al. CXCL8 induces epithelial-mesenchymal transition in colon cancer cells via the PI3K/Akt/NF-κB signaling pathway[J]. Oncol Rep, 2017, 37: 2095-2100.
[30] Li B, Wang Z, Zhong Y, et al. CCR9-CCL25 interaction suppresses apoptosis of lung cancer cells by activating the PI3K/Akt pathway[J]. Med Oncol, 2015, 32: 66.
[31] Zhang C, Li Z, Xu L, et al. CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer[J]. BMC Cancer, 2018, 18: 462.
[32] Li D, Ji H, Niu X, et al. Tumor-associated macrophages secrete CC-chemokine ligand 2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer[J]. Cancer Sci, 2020, 111: 47-58.
[33] Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19: 1997-2007.
[34] Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis[J]. J Recept Signal Transduct Res, 2015, 35: 600-604.
[35] Balan M, Pal S. A novel CXCR3-B chemokine receptor-induced growth-inhibitory signal in cancer cells is mediated through the regulation of Bach-1 protein and Nrf2 protein nuclear translocation[J]. J Biol Chem, 2014, 289: 3126-3137.
[36] Fang WB, Jokar I, Zou A, et al. CCL2/CCR2 chemokine signaling coordinates survival and motility of breast cancer cells through Smad3 protein- and p42/44 mitogen-activated protein kinase (MAPK)-dependent mechanisms[J]. J Biol Chem, 2012, 287: 36593-36608.
[37] Yang XL, Liu KY, Lin FJ, et al. CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis[J]. Oncol Rep, 2017, 38: 1393-1401.
[38] Wang X, Wang H, Wei X, et al. Effect of CXCR4 silencing with shRNA on MAPK signaling in ovarian cancer[J]. Oncol Lett, 2018, 15: 10026-10030.
[39] Tang G, Du R, Tang Z, et al. MiRNALet-7a mediates prostate cancer PC-3 cell invasion, migration by inducing epithelial-mesenchymal transition through CCR7/MAPK pathway[J]. J Cell Biochem, 2018, 119: 3725-3731.
[40] Manzoli L, Mongiorgi S, Clissa C, et al. Strategic role of nuclear inositide signalling in myelodysplastic syndromes therapy[J]. Mini Rev Med Chem, 2014, 14: 873-883.
[41] Rohacs T. Regulation of transient receptor potential channels by the phospholipase C pathway[J]. Adv Biol Regul, 2013, 53: 341-355.
[42] Katan M. New insights into the families of PLC enzymes: looking back and going forward[J]. Biochem J, 2005, 391: e7-e9.
[43] Yuan M, Gao Y, Li L, et al. Phospholipase C (PLC)ε promotes androgen receptor antagonist resistance via the bone morphogenetic protein (BMP)-6/SMAD axis in a castration-resistant prostate cancer cell line[J]. Med Sci Monit, 2019, 25: 4438-4449.
[44] Chuang JY, Yang WH, Chen HT, et al. CCL5/CCR5 axis promotes the motility of human oral cancer cells[J]. J Cell Physiol, 2009, 220: 418-426.
[45] Puengel T, Krenkel O, Kohlhepp M, et al. Differential impact of the dual CCR2/CCR5 inhibitor cenicriviroc on migration of monocyte and lymphocyte subsets in acute liver injury[J]. PLoS One, 2017, 12: e0184694.
[46] Grayson M. Breast cancer[J]. Nature, 2012, 485: S49.
[47] Boudot A, Kerdivel G, Habauzit D, et al. Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells[J]. PLoS One, 2011, 6: e20898.
[48] Hu Q, Myers M, Fang W, et al. Role of ALDH1A1 and HTRA2 expression in CCL2/CCR2-mediated breast cancer cell growth and invasion[J]. Biol Open, 2019, 8: bio040873.
[49] Lv ZD, Kong B, Liu XP, et al. CXCL12 chemokine expression suppresses human breast cancer growth and metastasis in vitro and in vivo[J]. Int J Clin Exp Pathol, 2014, 7: 6671-6678.
[50] Chan O, Burke JD, Gao DF, et al. The chemokine CCL5 regulates glucose uptake and AMP kinase signaling in activated T cells to facilitate chemotaxis[J]. J Biol Chem, 2012, 287: 29406-29416.
[51] Gao D, Rahbar R, Fish EN. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells[J]. Open Biol, 2016, 6: 160122.
[52] Luo M, Clouthier SG, Deol Y, et al. Breast cancer stem cells: current advances and clinical implications[J]. Methods Mol Biol, 2015, 1293: 1-49.
[53] Kundu N, Ma X, Brox R, et al. The chemokine receptor CXCR3 isoform B drives breast cancer stem cells[J]. Breast Cancer (Auckl), 2019, 13: 1178223419873628.
[54] Singh JK, Farnie G, Bundred NJ, et al. Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2via HER2-dependent and -independent mechanisms[J]. Clin Cancer Res, 2013, 19: 643-656.
[55] Kong L, Guo S, Liu C, et al. Overexpression of SDF-1 activates the NF-kappaB pathway to induce epithelial to mesenchymal transition and cancer stem cell-like phenotypes of breast cancer cells[J]. Int J Oncol, 2016, 48: 1085-1094.
[56] Fang Y, Henderson FC, Yi Q, et al. Chemokine CXCL16 expression suppresses migration and invasiveness and induces apoptosis in breast cancer cells[J]. Mediators Inflamm, 2014, 2014: 478641.
[57] Ma JJ, Jiang L, Tong DY, et al. CXCL13 inhibition induce the apoptosis of MDA-MB-231 breast cancer cells through blocking CXCR5/ERK signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22: 8755-8762.
[58] Xu H, Lin F, Wang Z, et al. CXCR2 promotes breast cancer metastasis and chemoresistance via suppression of AKT1 and activation of COX2[J]. Cancer Lett, 2018, 412: 69-80.
[59] Saahene RO, Wang J, Wang ML, et al. The antitumor mechanism of paeonol on CXCL4/CXCR3-B signals in breast cancer through induction of tumor cell apoptosis[J]. Cancer Biother Radiopharm, 2018, 33: 233-240.
[60] Chen L, Zhang S, Shen Y, et al. Thymus‑expressed chemokine secreted by breast cancer cells promotes metastasis and inhibits apoptosis[J]. Oncol Rep, 2020, 43: 1875-1884.
[61] Sjoberg E, Meyrath M, Milde L, et al. A novel ACKR2-dependent role of fibroblast-derived CXCL14 in epithelial-to-mesenchymal transition and metastasis of breast cancer[J]. Clin Cancer Res, 2019, 25: 3702-3717.
[62] Zhao C, Zheng S, Yan Z, et al. CCL18 promotes the invasion and metastasis of breast cancer through annexin A2[J]. Oncol Rep, 2020, 43: 571-580.
[63] Li F, Zou Z, Suo N, et al. CCL21/CCR7 axis activating chemotaxis accompanied with epithelial-mesenchymal transition in human breast carcinoma[J]. Med Oncol, 2014, 31: 180.
[64] Marsigliante S, Vetrugno C, Muscella A. Paracrine CCL20 loop induces epithelial-mesenchymal transition in breast epithelial cells[J]. Mol Carcinog, 2016, 55: 1175-1186.
[65] Xu B, Zhou M, Qiu W, et al. CCR7 mediates human breast cancer cell invasion, migration by inducing epithelial-mesenchymal transition and suppressing apoptosis through AKT pathway[J]. Cancer Med, 2017, 6: 1062-1071.
[66] Biswas S, Sengupta S, Roy Chowdhury S, et al. CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis[J]. Breast Cancer Res Treat, 2014, 143: 265-276.
[67] Ma G, Huang H, Li M, et al. Plasma CCL5 promotes EMT-medicated epirubicin-resistance in locally advanced breast cancer[J]. Cancer Biomark, 2018, 22: 405-415.
[68] Su S, Liu Q, Chen J, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis[J]. Cancer Cell, 2014, 25: 605-620.
[69] Svensson S, Abrahamsson A, Rodriguez GV, et al. CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer[J]. Clin Cancer Res, 2015, 21: 3794-3805.
[70] Wang S, Liu X, Huang R, et al. XIAOPI Formula inhibits breast cancer stem cells via suppressing tumor-associated macrophages/C-X-C motif chemokine ligand 1 pathway[J]. Front Pharmacol, 2019, 10: 1371.
[71] Wang N, Liu W, Zheng Y, et al. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling[J]. Cell Death Dis, 2018, 9: 880.
[72] Kitamura T, Qian BZ, Soong D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages[J]. J Exp Med, 2015, 212: 1043-1059.
[73] Walens A, DiMarco AV, Lupo R, et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors[J]. Elife, 2019, 8: e43653.
[74] Jayaraman S, Doucet M, Kominsky SL. CITED2 attenuates macrophage recruitment concordant with the downregulation of CCL20 in breast cancer cells[J]. Oncol Lett, 2018, 15: 871-878.
[75] Olkhanud PB, Baatar D, Bodogai M, et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells[J]. Cancer Res, 2009, 69: 5996-6004.
[76] Barsheshet Y, Wildbaum G, Levy E, et al. CCR8(+) FOXp3(+) T(reg) cells as master drivers of immune regulation[J]. Proc Natl Acad Sci U S A, 2017, 114: 6086-6091.
[77] Khalid A, Wolfram J, Ferrari I, et al. Recent advances in discovering the role of CCL5 in metastatic breast cancer[J]. Mini Rev Med Chem, 2015, 15: 1063-1072.
[78] Kutukculer N, Azarsiz E, Aksu G, et al. CD4+CD25+Foxp3+ T regulatory cells, Th1(CCR5, IL-2, IFN-γ) and Th2(CCR4, IL-4, IL-13) type chemokine receptors and intracellular cytokines in children with common variable immunodeficiency[J]. Int J Immunopathol Pharmacol, 2016, 29: 241-251.
[79] Zhang Q, Qin J, Zhong L, et al. CCL5-mediated Th2 immune polarization promotes metastasis in luminal breast cancer[J]. Cancer Res, 2015, 75: 4312-4321.
[80] Karin N. CXCR3 ligands in cancer and autoimmunity, chemoattraction of effector T cells, and beyond[J]. Front Immunol, 2020, 11: 976.
[81] Matsumura S, Wang B, Kawashima N, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells[J]. J Immunol, 2008, 181: 3099-3107.
[82] Seo EH, Namgung JH, Oh CS, et al. Association of chemokines and chemokine receptor expression with monocytic-myeloid-derived suppressor cells during tumor progression[J]. Immune Netw, 2018, 18: e23.
[83] Chen JY, Lai YS, Chu PY, et al. Cancer-derived VEGF-C increases chemokine production in lymphatic endothelial cells to promote CXCR2-dependent cancer invasion and MDSC recruitment[J]. Cancers (Basel), 2019, 11: 1120.
[84] Zhang Y, Lv D, Kim HJ, et al. A novel role of hematopoietic CCL5 in promoting triple-negative mammary tumor progression by regulating generation of myeloid-derived suppressor cells[J]. Cell Res, 2013, 23: 394-408.
[85] Sceneay J, Parker BS, Smyth MJ, et al. Hypoxia-driven immunosuppression contributes to the pre-metastatic niche[J]. Oncoimmunology, 2013, 2: e22355.
[86] Hsu YL, Yen MC, Chang WA, et al. CXCL17-derived CD11b(+) Gr-1(+) myeloid-derived suppressor cells contribute to lung metastasis of breast cancer through platelet-derived growth factor-BB[J]. Breast Cancer Res, 2019, 21: 23.
[87] Gunn MD. Chemokine mediated control of dendritic cell migration and function[J]. Semin Immunol, 2003, 15: 271-276.
[88] Wu S, Xing W, Peng J, et al. Tumor transfected with CCL21 enhanced reactivity and apoptosis resistance of human monocyte-derived dendritic cells[J]. Immunobiology, 2008, 213: 417-426.
[89] Park MH, Lee JS, Yoon JH. High expression of CX3CL1 by tumor cells correlates with a good prognosis and increased tumor-infiltrating CD8+ T cells, natural killer cells, and dendritic cells in breast carcinoma[J]. J Surg Oncol, 2012, 106: 386-392.
[90] Shurin GV, Ferris RL, Tourkova IL, et al. Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo[J]. J Immunol, 2005, 174: 5490-5498.
[91] Zhang JY, Chen ZY, Liu TT, et al. 3-Bromopyruvic acid increases the sensitivity of MCF-7/TR cells to tamoxifen[J]. Acta Pharm Sin (药学学报), 2020, 55: 164-169.
[92] Mitri Z, Constantine T, O'Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy[J]. Chemother Res Pract, 2012, 2012: 743193.
[93] Rybarova S, Hodorova I, Hajdukova M, et al. Expression of MDR proteins in breast cancer and its correlation with some clinical and pathological parameters[J]. Neoplasma, 2006, 53: 128-135.
[94] Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer[J]. Front Oncol, 2012, 2: 62.
[95] Hudis CA, Gianni L. Triple-negative breast cancer: an unmet medical need[J]. Oncologist, 2011, 16 Suppl 1: 1-11.
[96] Cheng FY, Chan CH, Wang BJ, et al. The oxygen-generating calcium peroxide-modified magnetic nanoparticles attenuate hypoxia-induced chemoresistance in triple-negative breast cancer[J]. Cancers (Basel), 2021, 13: 606.
[97] Tamamura H, Hori A, Kanzaki N, et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer[J]. FEBS Lett, 2003, 550: 79-83.
[98] Liang Z, Zhan W, Zhu A, et al. Development of a unique small molecule modulator of CXCR4[J]. PLoS One, 2012, 7: e34038.
[99] Liang Z, Wu T, Lou H, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4[J]. Cancer Res, 2004, 64: 4302-4308.
[100] Zhan W, Liang Z, Zhu A, et al. Discovery of small molecule CXCR4 antagonists[J]. J Med Chem, 2007, 50: 5655-5664.
[101] Smith MC, Luker KE, Garbow JR, et al. CXCR4 regulates growth of both primary and metastatic breast cancer[J]. Cancer Res, 2004, 64: 8604-8612.
[102] Dong XC, Wen R. Advances in the new anti-HIV drugs acting on chemokine receptor[J]. Acta Pharm Sin (药学学报), 2001, 36: 796-800.
[103] Yang Q, Zhang F, Ding Y, et al. Antitumour activity of the recombination polypeptide GST-NT21MP is mediated by inhibition of CXCR4 pathway in breast cancer[J]. Br J Cancer, 2014, 110: 1288-1297.
[104] Ling X, Spaeth E, Chen Y, et al. The CXCR4 antagonist AMD3465 regulates oncogenic signaling and invasiveness in vitro and prevents breast cancer growth and metastasis in vivo[J]. PLoS One, 2013, 8: e58426.
[105] Zhang J, Pang Y, Xie T, et al. CXCR4 antagonism in combination with IDO1 inhibition weakens immune suppression and inhibits tumor growth in mouse breast cancer bone metastases[J]. Onco Targets Ther, 2019, 12: 4985-4992.
[106] Huang EH, Singh B, Cristofanilli M, et al. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer[J]. J Surg Res, 2009, 155: 231-236.
[107] Pernas S, Martin M, Kaufman PA, et al. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial[J]. Lancet Oncol, 2018, 19: 812-824.
[108] Jiao X, Nawab O, Patel T, et al. Recent advances targeting CCR5 for cancer and its role in immuno-oncology[J]. Cancer Res, 2019, 79: 4801-4807.
[109] Velasco-Velazquez M, Jiao X, De La Fuente M, et al. CCR5 antagonist blocks metastasis of basal breast cancer cells[J]. Cancer Res, 2012, 72: 3839-3850.
[110] Jin K, Pandey NB, Popel AS. Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis[J]. Breast Cancer Res, 2018, 20: 54.
[111] Walser TC, Rifat S, Ma X, et al. Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer[J]. Cancer Res, 2006, 66: 7701-7707.
[112] Barreira da Silva R, Laird ME, Yatim N, et al. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy[J]. Nat Immunol, 2015, 16: 850-858.
[113] Li S, Fan Y, Kumagai A, et al. Deficiency in dipeptidyl peptidase-4 promotes chemoresistance through the CXCL12/CXCR4/mTOR/TGFβ signaling pathway in breast cancer cells[J]. Int J Mol Sci, 2020, 21: 805.
[114] Bronger H, Kraeft S, Schwarz-Boeger U, et al. Modulation of CXCR3 ligand secretion by prostaglandin E2 and cyclooxygenase inhibitors in human breast cancer[J]. Breast Cancer Res, 2012, 14: R30.
[115] Chheda ZS, Sharma RK, Jala VR, et al. Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors[J]. J Immunol, 2016, 197: 2016-2026.
相关文献:
1.马艳, 刘虹, 张浩, 邵荣光.TGF-β信号通路调控乳腺癌上皮-间质转化的研究进展[J]. 药学学报, 2015,50(4): 385-392
2.昌毓穗, 刘季春, 傅华群, 喻本桐, 邹书兵, 吴起才, 万 力.Ras/Raf/MEK/ERK通路在食管癌药物靶向治疗中的作用[J]. 药学学报, 2013,48(5): 635-641
3.汤 沁, 丁 倩, 林 莉, 张珍珍, 代 争, 詹金彪.针对HER2靶点的抗体药物研究与肿瘤靶向治疗[J]. 药学学报, 2012,47(10): 1297-1305