药学学报, 2021, 56(6): 1537-1543
孔邦彦, 魏立彬, 郭青龙*. 黄芩苷的抗肿瘤作用研究进展[J]. 药学学报, 2021, 56(6): 1537-1543.
KONG Bang-yan, WEI li-bin, GUO Qing-long*. Progress in antitumor activity of baicalin[J]. Acta Pharmaceutica Sinica, 2021, 56(6): 1537-1543.

孔邦彦, 魏立彬, 郭青龙*
中国药科大学基础医学与临床药学学院, 江苏 南京 211198
黄芩苷(baicalin)是从唇形科植物黄芩(Scutellaria baicalensis Georgi)中提取的主要生物活性成份,属于黄酮类化合物,黄芩苷药用价值高,具有抗菌、抗炎、抗氧化和保护神经等多种药理作用,并显示出巨大的抗肿瘤潜力。近几年研究发现,黄芩苷对人多种肿瘤具有较好的抑制作用,其作用机制包括诱导肿瘤细胞凋亡、抑制肿瘤迁移侵袭、诱导肿瘤细胞周期阻滞和抑制肿瘤血管生成等。现概述国内外对黄芩苷抗肿瘤药理作用及机制的研究进展,为黄芩苷的深入研究提供依据。
关键词:    黄芩苷      肿瘤治疗      细胞周期      凋亡      侵袭转移     
Progress in antitumor activity of baicalin
KONG Bang-yan, WEI li-bin, GUO Qing-long*
School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
Flavonoids baicalin is the main bioactive component extracted from Scutellaria baicalensis Georgi. Baicalin has high medicinal value and shows extensive pharmacological effects including antitumor, antibiosis, anti-inflammatory, antioxidation, neuro-protection, and significant potential in tumor treatment. Recent studies have shown that baicalin suppresses the growth of many kinds of human cancer. The underlying mechanisms include induction of apoptosis, induction of cell cycle arrest, inhibition of tumor metastasis, suppression of angiogenesis, and so on. This article reviewed the research progress of baicalin on its antitumor pharmacology and possible mechanisms at home and abroad, and provided the basis for its further research.
Key words:    baicalin    tumor therapy    cell cycle    apoptosis    invasion and metastasis   
收稿日期: 2020-10-20
DOI: 10.16438/j.0513-4870.2020-1642
基金项目: 国家科技重大专项-重大新药创制(2018ZX09711001-003-007).
通讯作者: 郭青龙,Tel:13801586679,E-mail:anticancer_drug@163.com
Email: anticancer_drug@163.com
PDF(1477KB) Free
孔邦彦  在本刊中的所有文章
魏立彬  在本刊中的所有文章
郭青龙*  在本刊中的所有文章

[1] Li C, Zhou L, Lin G, et al. Contents of major bioactive flavones in proprietary traditional Chinese medicine products and reference herb of Radix Scutellariae[J]. J Pharm Biomed Anal, 2009, 50: 298-306.
[2] Liu ZM, Ma YM, Wang TM, et al. In vitro metabolic interconversion between baicalin and baicalein in the liver, kidney, intestine and bladder of rat[J]. Acta Pharm Sin (药学学报), 2008, 43: 664-668.
[3] Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies[J]. Aging, 2016, 8: 603-619.
[4] Huang Q, Zhang J, Peng J, et al. Effect of baicalin on proliferation and apoptosis in pancreatic cancer cells[J]. Am J Transl Res, 2019, 11: 5645-5654.
[5] Yu Y, Pei M, Li L. Baicalin induces apoptosis in hepatic cancer cells in vitro and suppresses tumor growth in vivo[J]. Int J Clin Exp Med, 2015, 8: 8958.
[6] Jia YM, Chen LR, Guo SJ, et al. Baicalin induced colon cancer cells apoptosis through miR-217/DKK1-mediated inhibition of Wnt signaling pathway[J]. Mol Biol Rep, 2019, 46: 1693-1700.
[7] Yin P, Wang W, Zhang ZB, et al. Wnt signaling in human and mouse breast cancer: focusing on Wnt ligands, receptors and antagonists[J]. Cancer Sci, 2018, 109: 3368-3375.
[8] Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017, 36: 1461-1473.
[9] Ren X, Zhang YB, Li CL, et al. Enhancement of baicalin by hexamethylene bisacetamide on the induction of apoptosis contributes to simultaneous activation of the intrinsic and extrinsic apoptotic pathways in human leukemia cells[J]. Oncol Rep, 2013, 30: 2071-2080.
[10] Zhou W, Yu X, Sun S, et al. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence[J]. Biomed Pharmacother, 2019, 118: 109369.
[11] Wang Q, Xu H, Zhao X. Baicalin inhibits human cervical cancer cells by suppressing protein kinase C/signal transducer and activator of transcription (PKC/STAT3) signaling pathway[J]. Med Sci Monit, 2018, 24: 1955.
[12] Zhang Y, Fu QS, Liu W, et al. Inhibitory effect of baicalin on invasion of cervical cancer HeLa cells and its mechanism[J]. Xi'an Jiaotong Univ Med Sci (西安交通大学大学学报(医学版)), 2016, 37: 599-603.
[13] Han YH, Kee JY, Kim DS, et al. Arctii Fructus inhibits colorectal cancer cell proliferation and MMPs mediated invasion via AMPK[J]. Am J Chin Med, 2017, 45: 1309-1325.
[14] You JW, Cheng J, Yu B, et al. Baicalin, a Chinese herbal medicine, inhibits the proliferation and migration of human non-small cell lung carcinoma (NSCLC) cells, A549 and H1299, by activating the SIRT1/AMPK signaling pathway[J]. Med Sci Moni, 2018, 24: 2126-2133.
[15] Nieto MA, Huang RY, Jackson RA, et al. EMT: 2016[J]. Cell, 2016, 166: 21-45.
[16] Santamaria PG, Moreno‐Bueno G, Portillo F, et al. EMT: present and future in clinical oncology[J]. Mol Oncol, 2017, 11: 718-738.
[17] Liu DK, Dong HF, Liu RF, et al. Baicalin inhibits the TGF-β1/p-Smad3 pathway to suppress epithelial-mesenchymal transition-induced metastasis in breast cancer[J]. Oncotarget, 2020, 11: 2863-2872.
[18] Avila-Carrasco L, Majano P, Sánchez-Toméro JA, et al. Natural plants compounds as modulators of epithelial-to-mesenchymal transition[J]. Front Pharmacol, 2019, 10: 715.
[19] Ingham M, Schwartz GK. Cell-cycle therapeutics come of age[J]. J Clin Oncol, 2017, 35: 2949-2959.
[20] Diao X, Yang DF, Chen Y, et al. Baicalin suppresses lung cancer growth by targeting PDZ-binding kinase/T-LAK cell-originated protein kinase[J]. Biosci Rep, 2019, 39: BSR20181692.
[21] Yang B, Bai H, Sa Y, et al. Inhibiting EMT, stemness and cell cycle involved in baicalin-induced growth inhibition and apoptosis in colorectal cancer cells[J]. J Cancer, 2020, 11: 2303-2317.
[22] Gao J, Morgan WA, Sanchez-Medina A, et al. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells[J]. Toxicol Appl Pharmacol, 2011, 254: 221-228.
[23] Liu Y, Hong Z, Chen P, et al. Baicalin inhibits growth and induces apoptosis of human osteosarcoma cells by suppressing the AKT pathway[J]. Oncol Lett, 2019, 18: 3188-3194.
[24] Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside[J]. Semin Cancer Biol, 2019, 59: 125-132.
[25] Zhang B, Li YL, Zhao JL, et al. Hypoxia-inducible factor-1 promotes cancer progression through activating AKT/cyclin D1 signaling pathway in osteosarcoma[J]. Biomed Pharmacother, 2018, 105: 1-9.
[26] Zirlik K, Duyster J. Anti-angiogenics: current situation and future perspectives[J]. Oncol Res Treat, 2018, 41: 166-171.
[27] Teleanu RI, Chircov C, Grumezescu AM, et al. Tumor angiogenesis and anti-angiogenic strategies for cancer treatment[J]. J Clin Med, 2019, 9: 84.
[28] Morse MA, Sun W, Kim R, et al. The role of angiogenesis in hepatocellular carcinoma[J]. Clin Cancer Res, 2019, 25: 912-920.
[29] Wang N, Feng YB, Tan HY, et al. Inhibition of eukaryotic elongation factor-2 confers to tumor suppression by a herbal formulation Huanglian-Jiedu decoction in human hepatocellular carcinoma[J]. J Ethnopharmacol, 2015, 164: 309-318.
[30] Zhu DQ, Wang SS, Lawless J, et al. Dose dependent dual effect of baicalin and Herb Huang Qin extract on angiogenesis[J]. PLoS One, 2016, 11: e0167125.
[31] Al-Akra L, Bae DH, Leck LL, et al. The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in development of drug resistance[J]. Biochim Biophys Acta Gen Subj, 2019, 1863: 1390-1397.
[32] Monisha J, Padmavathi G, Roy NK, et al. NF-κB blockers gifted by mother nature: prospectives in cancer cell chemosensitization[J]. Curr Pharm Des, 2016, 22: 4173-4200.
[33] Zeng AQ, Liang X, Zhu SM, et al. Baicalin, a potent inhibitor of NF-κB signaling pathway, enhances chemosensitivity of breast cancer cells to docetaxel and inhibits tumor growth and metastasis both in vitro and in vivo[J]. Front Pharmacol, 2020, 11: 879.
[34] Zheng J, Asakawa T, Chen YY, et al. Synergistic effect of baicalin and adriamycin in resistant HL-60/ADM leukaemia cells[J]. Cell Physiol Biochem, 2017, 43: 419.
[35] Zheng J, Hu JD, Chen YY, et al. Baicalin induces apoptosis in leukemia HL-60/ADR cells via possible down-regulation of the PI3K/Akt signaling pathway[J]. Asian Pac J Cancer Prev, 2012, 13: 1119.
[36] Ghosh S. Cisplatin: the first metal based anticancer drug[J]. Bioorg Chem, 2019, 88: 102925.
[37] Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy[J]. Radiol Oncol, 2019, 53: 148-158.
[38] Xu ZW, Mei J, Tan Y. Baicalin attenuates DDP (cisplatin) resistance in lung cancer by downregulating MARK2 and p-Akt[J]. Int J Oncol, 2016, 50: 93.
[39] Li JH, Luo N, Zhong MZ, et al. Inhibition of microRNA-196a might reverse cisplatin resistance of A549/DDP non-small-cell lung cancer cell line[J]. Tumour Biol, 2016, 37: 2387-2394.
[40] Capece D, Verzella D, Tessitore A, et al. Cancer secretome and inflammation: the bright and the dark sides of NF-κB[J]. Semin Cell Dev Biol, 2018, 78: 51-61.
[41] Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials[J]. Int J Cancer, 2007, 121: 2373-2380.
[42] Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 18: 309-324.
[43] Zeng LX, Dong JC, Yu WQ, et al. Baicalin attenuates inflammation by inhibiting NF-κB activation in cigarette smoke induced inflammatory models[J]. Pulm Pharmacol Ther, 2010, 23: 411-419.
[44] Guo MY, Zhang NS, Li DP, et al. Baicalin plays an anti-inflammatory role through reducing nuclear factor-κB and p38 phosphorylation in S. aureus-induced mastitis[J]. Int Immunopharmacol, 2013, 6: 125-130.
[45] Gao Y, Liu H, Wang HZ, et al. Baicalin inhibits breast cancer development via inhibiting IĸB kinase activation in vitro and in vivo[J]. Int J Oncol, 2018, 53: 2727-2736.
[46] Wu YL, Wang F, Fan LH, et al. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-kappa B and p38 MAPK signaling pathways[J]. Biomed Pharmacother, 2018, 97: 1673-1679.
[47] Watson M, Holman DM, Maguire-Eisen M. Ultraviolet radiation exposure and its impact on skin cancer risk[J]. Semin Oncol Nurs, 2016, 32: 241-254.
[48] Sherwani MA, Yang K, Jani A, et al. Protective effect of baicalin against TLR4-mediated UVA-induced skin inflammation[J]. Photochem Photobiol, 2019, 95: 605-611.
[49] Mansoorali KP, Prakash T, Kotresha D, et al. Cerebroprotective effect of Eclipta alba against global model of cerebral ischemia induced oxidative stress in rats[J]. Phytomedicine, 2012, 19: 1108-1116.
[50] Gill JG, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis[J]. Cold Spring Harb Symp Quant Biol, 2016, 81: 163-175.
[51] Pickering AM, Linder RA, Zhang H, et al. Nrf2-dependent induction of proteasome and Pa28αβ regulator are required for adaptation to oxidative stress[J]. J Biol Chem, 2012, 287: 10021-10031.
[52] Ng TB, Liu F, Wang ZT. Antioxidative activity of natural products from plants[J]. Life Sci, 2000, 66: 709-723.
[53] Ricardo B, Neena P, Jorge Suárez-Pérez, et al. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals[J]. Antioxidants (Basel), 2015, 4: 248-268.
[54] Gao Z, Huang K, Yang X, et al. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi[J]. Biochim Biophys Acta, 1999, 1472: 643-650.
[55] Chen HY, Geng M, Hu YZ, et al. Effects of baicalin against oxidative stress injury of SH-SY5Y cells by up-regulating SIRT1[J]. Acta Pharm Sin (药学学报), 2011, 46: 1039-1044.
1.魏静, 冯跃平, 郑茜, 王钦, 张春.双香豆素体外抗肿瘤活性筛选及相关机制初探[J]. 药学学报, 2020,55(12): 2904-2910
2.王琳, 余瑞双, 杨文亮, 栾淑娟, 秦本凯, 庞晓斌, 杜冠华.紫杉醇载药胶束对人肺癌A549细胞增殖与凋亡的影响[J]. 药学学报, 2015,50(10): 1240-1245
3.郭明, 伍周玲, 王春歌, 高小艳.黄芩苷-金属配合物的合成及其抗肿瘤活性研究[J]. 药学学报, 2014,49(3): 337-345
4.谭娇, 王雅萍, 王慧欣, 梁剑铭, 张梦, 孙逊, 黄永焯.具有穿膜功能的嵌合型AVPI-低分子量鱼精蛋白/DNA共给药系统的抗肿瘤研究[J]. 药学学报, 2014,49(12): 1718-1723
5.崔朴梅, 舒丽, 刘菲, 杨俊卿, 宋杨, 孙文娟.新型环磷酰胺类衍生物9b体内外抗肿瘤作用[J]. 药学学报, 2014,49(1): 44-49
6.侯莉莉, 许秋菊, 胡国强, 谢松强.丹参酮ⅡA增强顺铂抗前列腺癌作用及分子机制研究[J]. 药学学报, 2013,48(5): 675-679
7.刘亮亮,陈娜,袁萱,姚瑛,张波,郑秋生.维康醇抑制白血病HL-60细胞增殖机制研究[J]. 药学学报, 2012,47(11): 1477-1482
8.陈红艳 耿淼 胡亚卓 王建华.黄芩苷通过上调SIRT1保护SH-SY5Y氧化应激的损伤[J]. 药学学报, 2011,46(9): 1039-1044
9.谢松强 李 骞 马红霞 张亚宏 王建红 赵 瑾 王超杰.多胺缀合物WJH-6诱导白血病细胞凋亡机制研究[J]. 药学学报, 2010,45(4): 451-455
10.蒋国松;童强松;曾甫清;胡波;郑丽端;蔡嘉斌;刘媛.茉莉酸甲酯诱导人神经母细胞瘤细胞株BE(2)-C凋亡作用机制[J]. 药学学报, 2008,43(6): 584-590
11.杨华1;2;4;蔡于琛;庞冀燕;李永强;曾昭蕾;许遵乐;冼励坚.苯并呋喃类木脂素衍生物通过抑制细胞周期蛋白质活性诱导MCF-7细胞G2/M期阻滞及凋亡[J]. 药学学报, 2008,43(2): 138-144
12.刘萍;王菊英;李倩;许复郁;王姿颖;徐红岩;刘兆平;张岫美.黄芩苷对大鼠脑缺血再灌注损伤后海马神经元HSP70表达的影响[J]. 药学学报, 2006,41(7): 619-624
13.董庆华;郑树;;徐荣臻;吕庆华.黄芩苷元选择性诱导人白血病K562细胞凋亡[J]. 药学学报, 2003,38(11): 817-820