药学学报, 2021, 56(6): 1599-1605
引用本文:
詹芸, 李瑞, 李晓琳, 韩燕星, 蒋建东*. 绿原酸通过IFN-γ信号通路抑制食管癌细胞中PD-L1的表达[J]. 药学学报, 2021, 56(6): 1599-1605.
ZHAN Yun, LI Rui, LI Xiao-lin, HAN Yan-xing, JIANG Jian-dong*. Chlorogenic acid down-regulates the expression of PD-L1 in esophageal squamous cell carcinoma via IFN-γ signaling pathway[J]. Acta Pharmaceutica Sinica, 2021, 56(6): 1599-1605.

绿原酸通过IFN-γ信号通路抑制食管癌细胞中PD-L1的表达
詹芸, 李瑞, 李晓琳, 韩燕星, 蒋建东*
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
摘要:
本研究应用体内、外模型探讨了绿原酸(chlorogenic acid,CGA)对食管癌中程序性死亡受体配体1(programmed cell death ligand 1,PD-L1)的表达调控作用,以及干扰素γ(interferon γ,IFN-γ)在这一调控过程中发挥的作用。遵从中国医学科学院药物研究所动物实验中心标准操作规程(SOP)建立小鼠食管癌模型,通过基因芯片检测发现小鼠食管癌组织中PD-L1的差异表达,并应用qRT-PCR、Western blot和免疫组化(immunohistochemistry,IHC)染色在小鼠食管癌组织中进行验证,然后在体外培养的食管癌细胞中进行进一步的验证和机制探讨。结果发现,CGA能够显著抑制小鼠食管癌组织中PD-L1的表达,但在体外培养的KYSE180及KYSE510食管癌细胞中,PD-L1的表达并不受CGA的调控。用IFN-γ对KYSE180和KYSE510细胞进行预处理,PD-L1的表达明显升高,再加入CGA处理,PD-L1的表达下调,并且随着CGA浓度的增加或者处理时间的延长,PD-L1表达受抑制的效果越明显。同时,通过对PD-L1上游的干扰素调节因子1(interferon regulatory factor 1,IRF1)的检测表明,在经IFN-γ预处理的KYSE180及KYSE510细胞中,IRF1的表达受到CGA的抑制,其变化趋势与PD-L1一致。上述结果表明,CGA可以通过IFN-γ信号通路下调食管癌中PD-L1的表达,为食管癌治疗的新方法提供了分子理论基础。
关键词:    绿原酸      干扰素γ      食管癌      程序性死亡受体配体1      干扰素调节因子1     
Chlorogenic acid down-regulates the expression of PD-L1 in esophageal squamous cell carcinoma via IFN-γ signaling pathway
ZHAN Yun, LI Rui, LI Xiao-lin, HAN Yan-xing, JIANG Jian-dong*
State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
In this study, the regulatory effects of chlorogenic acid (CGA) on the expression of programmed cell death ligand 1 (PD-L1) in esophageal squamous cell carcinoma (ESCC), as well as the role of interferon γ (IFN-γ), has been discussed using both in vitro and in vivo animal models. ESCC murine model was established according to the standard operating procedures (SOP) of Animal Experiment Center of Institute of Materia Medica, Chinese Academy of Medical Sciences. The expression of PD-L1 in esophageal tissues of murine models was analyzed using the microarray assay. Then, the results were verified by qRT-PCR, Western blot and immunohistochemistry (IHC) staining, the molecular mechanism was explored in KYSE180 and KYSE510 ESCC cells in vitro. The results showed that CGA could suppress the expression of PD-L1 in tumor tissues in murine models significantly, rather than the expression in KYSE180 and KYSE510 ESCC cells in vitro. However, after the pretreatment of IFN-γ, the expression of PD-L1 was significantly increased, then it was down-regulated by CGA in both dose- and time-dependent manner. Meanwhile, the expression of interferon regulatory factor 1 (IRF1), an upstream regulatory factor of PD-L1, was suppressed by CGA in both KYSE180 and KYSE510 pretreated with IFN-γ, which was consistent with the expression of PD-L1. These results indicate that CGA down-regulates the expression of PD-L1 in ESCC via IFN-γ-IRF1 signaling pathway, providing the molecular theoretical basis for exploration of new treatment of ESCC.
Key words:    chlorogenic acid    interferon-γ    esophageal squamous cell carcinoma    programmed cell death ligand 1    interferon regulatory factor 1   
收稿日期: 2021-01-20
DOI: 10.16438/j.0513-4870.2021-0111
基金项目: 国家科技重大专项“重大新药创制”项目(2018ZX09711001-003-001);协和青年基金资助项目(3332015165).
通讯作者: 蒋建东,Tel:86-10-63017906,E-mail:jiang.jdong@163.com
Email: jiang.jdong@163.com
相关功能
PDF(2192KB) Free
打印本文
0
作者相关文章
詹芸  在本刊中的所有文章
李瑞  在本刊中的所有文章
李晓琳  在本刊中的所有文章
韩燕星  在本刊中的所有文章
蒋建东*  在本刊中的所有文章

参考文献:
[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66: 115-132.
[2] Taylor PR, Abnet CC, Dawsey SM. Squamous dysplasia--the precursor lesion for esophageal squamous cell carcinoma[J]. Cancer Epidemiol Biomarkers Prev, 2013, 22: 540-552.
[3] Zou W, Wolchok JD, Chen L. PD-L1(B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations[J]. Sci Transl Med, 2016, 8: 328rv324.
[4] Wei Y, Zhao Q, Gao Z, et al. The local immune landscape determines tumor PD-L1 heterogeneity and sensitivity to therapy[J]. J Clin Invest, 2019, 129: 3347-3360.
[5] Huang S, Wang LL, Xue NN, et al. Chlorogenic acid effectively treats cancers through induction of cancer cell differentiation[J]. Theranostics, 2019, 9: 6745-6763.
[6] Xue N, Zhou Q, Ji M, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype[J]. Sci Rep, 2017, 7: 39011.
[7] Zhan Y, Li R, Feng C, et al. Chlorogenic acid inhibits esophageal squamous cell carcinoma growth in vitro and in vivo by downregulating the expression of BMI1 and SOX2[J]. Biomed Pharmacother, 2020, 121: 109602.
[8] Garcia-Diaz A, Shin DS, Moreno BH, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression[J]. Cell Rep, 2017, 19: 1189-1201.
[9] Wang QH, Du TT, Zhang ZH, et al. Advances in research on the pharmacological effects and mechanism of action of chlorogenic acid[J]. Acta Pharm Sin (药学学报), 2020, 55: 2273-2280.
[10] Zhang X, Zeng Y, Qu Q, et al. PD-L1 induced by IFN-gamma from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer[J]. Int J Clin Oncol, 2017, 22: 1026-1033.
[11] Zerdes I, Matikas A, Bergh J, et al. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations[J]. Oncogene, 2018, 37: 4639-4661.
[12] Gu L, Chen M, Guo D, et al. PD-L1 and gastric cancer prognosis: a systematic review and meta-analysis[J]. PLoS One, 2017, 12: e0182692.
[13] Aune TM, Pogue SL. Inhibition of tumor cell growth by interferon-gamma is mediated by two distinct mechanisms dependent upon oxygen tension: induction of tryptophan degradation and depletion of intracellular nicotinamide adenine dinucleotide[J]. J Clin Invest, 1989, 84: 863-875.
[14] Addison CL, Arenberg DA, Morris SB, et al. The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis[J]. Hum Gene Ther, 2000, 11: 247-261.
[15] Fukui T, Matsui K, Kato H, et al. Significance of apoptosis induced by tumor necrosis factor-alpha and/or interferon-gamma against human gastric cancer cell lines and the role of the p53 gene[J]. Surg Today, 2003, 33: 847-853.
[16] Ribatti D, Nico B, Pezzolo A, et al. Angiogenesis in a human neuroblastoma xenograft model: mechanisms and inhibition by tumour-derived interferon-gamma[J]. Br J Cancer, 2006, 94: 1845-1852.
[17] Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape[J]. Immunol Rev, 2008, 222: 206-221.
[18] Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer[J]. J Immunol, 2009, 182: 4499-4506.
[19] Mandai M, Hamanishi J, Abiko K, et al. Dual faces of IFNgamma in cancer progression: a role of PD-L1 induction in the determination of pro- and antitumor immunity[J]. Clin Cancer Res, 2016, 22: 2329-2334.
[20] Barach YS, Lee JS, Zang X. T cell coinhibition in prostate cancer: new immune evasion pathways and emerging therapeutics[J]. Trends Mol Med, 2011, 17: 47-55.
[21] Schalper KA. PD-L1 expression and tumor-infiltrating lymphocytes: revisiting the antitumor immune response potential in breast cancer[J]. Oncoimmunology, 2014, 3: e29288.
[22] McInnes RR. 2014 Victor A. McKusick Leadership Award introduction: David Valle[J]. Am J Hum Genet, 2015, 96: 372-373.
[23] Wu J, Lv JY, Lan Y, et al. Advances in tumor immunotherapy[J]. Chin J Cell Mol Immunol (细胞与分子免疫学杂志), 2019, 35: 659-664.
[24] Wu PY. Advances in immunotherapy for esophageal squamous cell carcinoma[J]. Chin J Cancer Biother (中国肿瘤生物治疗杂志), 2020, 27: 1043-1049.