药学学报, 2021, 56(6): 1689-1695
引用本文:
万悦, 申雨檬, 邹俊凤, 陈孟君, 张智苗, 江曙*, 钱大玮, 段金廒. 理中汤提取物中5种主要活性成分在体肠吸收特征研究[J]. 药学学报, 2021, 56(6): 1689-1695.
WAN Yue, SHEN Yu-meng, ZOU Jun-feng, CHEN Meng-jun, ZHANG Zhi-miao, JIANG Shu*, QIAN Da-wei, DUAN Jin-ao. The intestinal absorption characteristics of five active components in Lizhong Decoction[J]. Acta Pharmaceutica Sinica, 2021, 56(6): 1689-1695.

理中汤提取物中5种主要活性成分在体肠吸收特征研究
万悦, 申雨檬, 邹俊凤, 陈孟君, 张智苗, 江曙*, 钱大玮, 段金廒
南京中医药大学, 江苏省中药资源产业化过程协同创新中心, 江苏 南京 210023
摘要:
通过建立大鼠在体单向肠灌流模型,采用UPLC-TQ-MS测定不同肠段灌流液中理中汤提取物5种主要活性成分(甘草酸、异甘草素、6-姜酚、人参皂苷Rb1和白术内酯-I)的含量。动物福利和实验过程均遵循南京中医药大学动物伦理委员会的规定。以吸收速率常数(Ka)和有效渗透系数(Peff)为评价指标,分析以上5种成分的肠吸收特点。结果显示,甘草酸、异甘草素和6-姜酚的最佳吸收部位分别为回肠、结肠和十二指肠,差异均具有统计学意义(P<0.05);人参皂苷Rb1和白术内酯-I在不同肠段的吸收参数无显著性差异(P>0.05),提示这两种活性成分在大鼠全肠段均有吸收,不受吸收部位影响。且5种指标成分在全肠段吸收均较好(Peff>1.0×10-3 cm·min-1),结果提示:理中汤适宜于制备成缓控释、肠溶制剂等。
关键词:    理中汤      超高效液相色谱-串联质谱法      在体肠灌流      肠吸收特征      重量法     
The intestinal absorption characteristics of five active components in Lizhong Decoction
WAN Yue, SHEN Yu-meng, ZOU Jun-feng, CHEN Meng-jun, ZHANG Zhi-miao, JIANG Shu*, QIAN Da-wei, DUAN Jin-ao
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
Abstract:
The intestinal absorption properties of the main effective components (glycyrrhizic acid, isoliquiritigenin, 6-gingerol, ginsenoside Rb1, atractylode-I) in Lizhong decoction (LZD) extracts were investigated with an in situ single-pass intestinal perfusion model in rats. UPLC-TQ-MS was used to determine the concentration of the five components in the intestinal perfusion. Animal welfare and experimental procedures were in accordance with the regulations of the Animal Ethics Committee of Nanjing University of Chinese Medicine. As evaluation indexes for the intestinal absorption characteristics, the absorption rate constant (Ka) and the apparent permeability coefficient (Peff) of the five main ingredients were analyzed. Results showed that the best absorption sites for glycyrrhizic acid, isoliquiritin and 6-gingerol were the ileum, colon and duodenum, respectively, and the differences between different intestinal segments were statistically significant (P <0.05). There was no notable difference in Ka and Peff between ginsenoside Rb1 and atractylode-I in the different intestinal segments (P > 0.05), suggesting that they were absorbed throughout. The five components were well-absorbed in the whole intestine (Peff > 1.0×10-3 cm·min-1), indicating that LZD is suitable for preparing sustained, controlled release and enteric-coated preparations.
Key words:    Lizhong decoction    UPLC-TQ-MS    in situ intestinal perfusion    intestinal absorption characteristics    gravimetric method   
收稿日期: 2021-01-15
DOI: 10.16438/j.0513-4870.2021-0097
基金项目: 江苏省中药资源产业化过程协同创新中心重点项目(ZDXM-3-9).
通讯作者: 江曙,Tel:86-25-85811516,E-mail:jiangshu2020@126.com
Email: jiangshu2020@126.com
相关功能
PDF(1832KB) Free
打印本文
0
作者相关文章
万悦  在本刊中的所有文章
申雨檬  在本刊中的所有文章
邹俊凤  在本刊中的所有文章
陈孟君  在本刊中的所有文章
张智苗  在本刊中的所有文章
江曙*  在本刊中的所有文章
钱大玮  在本刊中的所有文章
段金廒  在本刊中的所有文章

参考文献:
[1] Zhang ZJ. Shang Han Lun (伤寒论)[M]. Beijing: People's Medical Publishing House, 2012: 252.
[2] Ma SH, Gu SS. Reinterpretation of lizhong decoction from fuyang medicine[J]. Inner Mong J Tradit Chin Med (内蒙古中医药), 2020, 39: 151-152.
[3] Han YY, Duan YQ, Wang MN, et al. Talking about the nine chapters of "major illnesses to the stomach" thought from the lizhong decoction joint fang group[J]. Hubei J Tradit Chin Med (湖北中医药), 2020, 42: 43-45.
[4] Fei ZY. Lizhong Decoction Prescription and Clinical Research (理中汤方证和临床研究)[D]. Beijing: Beijing University of Chinese Medicine, 2011.
[5] Lv J. Randomized parallel controlled study of lizhong decoction combined with western medicine in the treatment of gastric ulcer (Piwei Xuhan)[J]. J Pract Tradit Chin Med (实用中医内科杂志), 2019, 33: 23-26.
[6] Farombi EO, Ajayi BO, Adedara IA. 6-Gingerol delays tumorigenesis in benzo[a]pyrene and dextran sulphate sodium-induced colorectal cancer in mice-sciencedirect[J]. Food Chem Toxicol, 2020, 142: 111483.
[7] Han X, Liu P, Liu M, et al.
[6]-Gingerol ameliorates ISO-induced myocardial fibrosis by reducing oxidative stress, inflammation, and apoptosis through inhibition of TLR4/MAPKs/NF-κB pathway[J]. Mol Nutr Food Res, 2020, 64: e2000003.
[8] Tian M, Ma P, Zhang Y, et al. Ginsenoside Rk3 alleviated DSS-induced ulcerative colitis by protecting colon barrier and inhibiting NLRP3 inflammasome pathway-sciencedirect[J]. Int Immunopharmacol, 2019, 85: 106645.
[9] Yu HS, Song XB, Ma BP. Advances in the study of derivatization of ginsenosides and their anti-tumor structure-activity relationship[J]. Acta Pharm Sin (药学学报), 2012, 47: 836-843.
[10] Bailly C. Atractylenolides, essential components of atractylodes-based traditional herbal medicines: antioxidant, anti-inflammatory and anticancer properties[J]. Eur J Pharmacol, 2021, 891: 173735.
[11] Wang J, Feng W, Zhang S, et al. Ameliorative effect of atractylodes macrocephala essential oil combined with Panax ginseng total saponins on 5-fluorouracil induced diarrhea is associated with gut microbial modulation[J]. J Ethnopharmacol, 2019, 238: 111887.
[12] Huang M, Li K, Jin SY, et al. Design, synthesis and antiproliferative activity in cancer cells of novel 18β-glycyrrhetinic acid derivatives[J]. Acta Pharm Sin (药学学报), 2015, 50: 1263-1271.
[13] Man Q, Deng Y, Li P, et al. Licorice ameliorates cisplatin-induced hepatotoxicity through antiapoptosis, antioxidative stress, anti-inflammation, and acceleration of metabolism[J]. Front Pharmacol, 2020, 11: 563750.
[14] Shen Y, Zou J, Zhang Z, et al. Protective effects of lizhong decoction on ulcerative colitis mice by suppressing inflammation and ameliorating gut barrier[J]. J Ethnopharmacol, 2020, 259: 112919.
[15] Shen Y, Cui X, Jiang S, et al. Comparative pharmacokinetics of nine major bioactive components in normal and ulcerative colitis rats after oral administration of lizhong decoction extracts by UPLC-TQ-MS/MS[J]. Biomed Chromatogr, 2019, 33: e4521.
[16] Zhang SQ, Wang JX. Biopharmaceuticals and Pharmacokinetics (生物药剂学与药代动力学)[M]. Beijing: China Medical Science Press, 2016: 17.
[17] Chen Y, Xin R, Wang JY, et al. Multiple analysis of the difference in intestinal absorption between the main components and the extract of Glycyrrhiza uralensis[J]. Acta Pharm Sin (药学学报), 2012, 47: 657-663.
[18] Guo YY, Sun S, Yang DY, et al. In vivo absorption characteristics of 5 saponins from the extract of Caulophyllum robustum Maxim by one-way perfusion[J]. Res Pract Chin Med (现代中药研究与实践), 2020, 34: 11-17, 22.
[19] Gou J, Tian YL, Yang DY, et al. Intestinal absorption characteristics of baicalin in huangqin decoction in rats[J]. Drugs Clin (现代药物与临床), 2020, 35: 438-441.
[20] Bai JQ, Wang PF, Wang XP, et al. Intestinal transit characteristics study of danshen-honghua drug pairs through in vivo single-pass intestinal perfusion rat model[J]. Pharmacol Clin Chin Mater Clin Med (中药药理与临床), 2020, 36: 149-153.
[21] Dezani TM, Dezani AB, Silva MMC, et al. In situ intestinal perfusion in rodents: future perspectives for application on absorption studies and classification of drugs[J]. Mini Rev Med Chem, 2017, 17: 746-757.
[22] Yang H, Hao Q, Cheng J, et al. Exploring the compatibility mechanism of shengdiguang decoction based on the in situ single-pass intestinal perfusion model[J]. Biopharm Drug Dispos, 2020, 41: 44-53.
[23] Liu Y, Zhang X, Shi XJ, et al. Applicability analysis and evaluation of aglycones in single-pass intestinal perfusion technique based on PBPK model[J]. China J Chin Mate Med (中国中药杂志), 2019, 44: 3645-3652.
[24] Wang XY, Lian H, Lu XY, et al. Intestinal absorption of phenolic acids in Rhus chinensis extracts by in situ single-pass perfusion model in rats[J]. China J Chin Mate Med (中国中药杂志), 2019, 44: 2373-2378.
[25] Xu HJ, Liu YX, Liu XG, et al. Comparison study of baicalin magnesium salt and baicalein on intestinal absorption kinetics[J]. Chin Exp Tradit Med Form (中国实验方剂学杂志), 2018, 24: 78-83.
[26] Sun HY, Chen H, Mei CY, et al. Study on intestinal absorption characteristics of 5 active components in ethanol extract from Bletilla striata[J]. Chin Pharm (中国药房), 2019, 30: 757-764.
[27] Cai LY, Wu LL, Yu XM, et al. The absorption and metabolism of oxymatrine in rat intestine[J]. Acta Pharm Sin (药学学报), 2015, 50: 1336-1341.
[28] Shi YJ, Wang RL, Zhang YF, et al. Intestinal absorption in situ of diclofenac sodium in rat[J]. Guide Chin Med (中国医药指南), 2019, 15: 4-6.
[29] He S, Lin MX, Jiang YN, et al. Intestinal absorption model of component of Chinese medicinal: its research progress and reflection[J]. Acta Chin Med Pharm, 2018, 46: 121-124.
[30] Ma YH, Fang Y, Bao Y, et al. Research progress in lipid-drug conjugates[J]. Acta Pharm Sin (药学学报), 2020, 55: 2281-2290.
[31] Yu X, Chi SS, Jiao QS, et al. Intestinal absorption of iridoid glycosides in Simiao Yong'an Tang with different compatibility[J]. J Beijing Univ Tradit Chin Med (北京中医药大学学报), 2019, 42: 592-601.
[32] Wang Y, Jiang JD. A new research mode of drug PK-PD mediated by the gut microbiota: insights into the pharmacokinetics of berberine[J]. Acta Pharm Sin (药学学报), 2018, 53: 659-666.
[33] Liu QY. Research progress on preparation technologies of improving oral bioavailability of Chinese medicine[J]. Guangzhou Chem Ind (广州化工), 2018, 46: 28-30.
[34] Geng T, Wu XL, Wang ZW. Research progress of pharmacokinetics study on 6-gingerol, an active component in ginger[J]. J Pharm Res (药学研究), 2017, 36: 231-235.
[35] Cheng YY. Recent advance in predicting oral bioavailability[J]. Acta Pharm Sin (药学学报), 2006, 41: 917-920.