药学学报, 2021, 56(7): 1927-1935
引用本文:
邓春平, 陈航, 王英华, 梁神娣, 曹迪, 俞金泉, 李胜峰, 刘翠华*. 贝伐珠单抗生物类似药BAT1706体外生物学活性相似性研究[J]. 药学学报, 2021, 56(7): 1927-1935.
DENG Chun-ping, CHEN Hang, WANG Ying-hua, LIANG Shen-di, CAO Di, YU Jin-quan, LI Sheng-feng, LIU Cui-hua*. In vitro functional similarity assessment of a proposed biosimilar BAT1706 to bevacizumab[J]. Acta Pharmaceutica Sinica, 2021, 56(7): 1927-1935.

贝伐珠单抗生物类似药BAT1706体外生物学活性相似性研究
邓春平, 陈航, 王英华, 梁神娣, 曹迪, 俞金泉, 李胜峰, 刘翠华*
百奥泰生物制药股份有限公司, 广东 广州 510530
摘要:
生物类似药是在质量、安全性和有效性方面与已获准注册的参照药具有相似性的治疗用生物制品。BAT1706是百奥泰生物制药股份有限公司研发的一款贝伐珠单抗生物类似药,可与血管内皮生长因子A (vascular endothelial growth factor A,VEGF-A)特异性结合,阻断其与内皮细胞表面VEGF受体(VEGF receptor,VEGFR)的结合,阻断配体-受体介导的下游信号通路,抑制内皮血管新生,从而抑制肿瘤生长。采用多种分析技术对BAT1706与原研药Avastin®的体外生物学功能活性进行了全面对比分析,以评价两者的相似性。结果显示,BAT1706与不同形式VEGF-A的结合活性同Avastin®高度相似;两者中和VEGF-A的生物学活性等效,抑制VEGF-A介导的VEGFR-2自磷酸化活性高度相似;此外,BAT1706与不同类型Fcγ受体的亲和力同Avastin®高度相似,且两者均不能诱导肿瘤细胞产生抗体依赖的细胞介导的细胞毒性作用(antibody-dependent cell-mediated cytotoxicity,ADCC)及补体介导的细胞毒性作用(complement-dependent cytotoxicity,CDC)效应。本研究证明了BAT1706与Avastin®在体外生物学功能活性方面的相似性。
关键词:    血管内皮生长因子      贝伐珠单抗      生物类似药      相似性      生物学活性     
In vitro functional similarity assessment of a proposed biosimilar BAT1706 to bevacizumab
DENG Chun-ping, CHEN Hang, WANG Ying-hua, LIANG Shen-di, CAO Di, YU Jin-quan, LI Sheng-feng, LIU Cui-hua*
Bio-Thera Solutions, Ltd., Guangzhou 510530, China
Abstract:
Biosimilars are biological medicinal products that are highly similar to an already licensed reference product in terms of quality, safety, and efficacy. BAT1706 is being developed by Bio-Thera Solutions, Ltd. as a proposed biosimilar candidate to bevacizumab reference product (Avastin®). Bevacizumab acts by specifically binding to vascular endothelial growth factor A (VEGF-A), and preventing the interaction of VEGF-A with its receptors on the surface of endothelial cells, then blocking the downstream signaling pathway mediated by ligand-receptor, and inhibiting endothelial angiogenesis, thus inhibiting tumor growth. Comprehensive analytical characterization studies incorporating orthogonal analytical techniques were performed to compare the in vitro functional activities of BAT1706 and Avastin®. BAT1706 and Avastin® showed highly similar binding activity to multiple VEGF-A isoforms and equivalent VEGF-A neutralizing activity, as well as inhibitory activity of VEGF receptor (VEGFR)-2 tyrosine kinase autophosphorylation. Both products exhibited similar binding of the Fcγ receptors and a lack of Fc-related effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Overall, the results demonstrate that BAT1706 and Avastin® are highly similar in terms of in vitro functional activities.
Key words:    vascular endothelial growth factor    bevacizumab    biosimilar    similarity    functional activity   
收稿日期: 2021-01-28
DOI: 10.16438/j.0513-4870.2021-0144
基金项目: 国家“重大新药创制”科技重大专项资助项目(2013ZX09401001);广东省引进创新创业团队资助项目(2013Y116).
通讯作者: 刘翠华,Tel:86-20-89850125,E-mail:chliu@bio-thera.com
Email: chliu@bio-thera.com
相关功能
PDF(587KB) Free
打印本文
0
作者相关文章
邓春平  在本刊中的所有文章
陈航  在本刊中的所有文章
王英华  在本刊中的所有文章
梁神娣  在本刊中的所有文章
曹迪  在本刊中的所有文章
俞金泉  在本刊中的所有文章
李胜峰  在本刊中的所有文章
刘翠华*  在本刊中的所有文章

参考文献:
[1] Center for Drug Evaluation, China National Medical Product Administration (NMPA). Technical guideline for the development and evaluation of biosimilars (Interim)[EB/OL]. Beijing:NMPA, 2015[2021-01-23]. http://www.cde.org.cn/zdyz.do?method=largePage&id=2f41e8f3c64fedad.
[2] Liu BN, Bai Y, Luo JH. Biosimilarity study regarding product quality of candidate recombinant monoclonal antibodies as biosimilars[J]. Chin Pharm J (中国药学杂志), 2017, 52:1194-1200.
[3] World Health Organization. Guidelines on Evaluation of Similar Biotherapeutic Products (SBPs)[R]. Geneva:WHO, 2009.
[4] Lee JJ, Yang J, Lee C, et al. Demonstration of functional similarity of a biosimilar adalimumab SB5 to Humira®[J]. Biologicals, 2019, 58:7-15.
[5] Food and Drug Administration. Quality considerations in demonstrating biosimilarity of a therapeutic protein product to a reference product[EB/OL]. US:FDA, 2015[2020-01-23]. https://www.fda.gov/media/135612/download.
[6] Food and Drug Administration. Guidance for industry:development of therapeutic protein biosimilars:comparative analytical assessment and other quality-related considerations[EB/OL]. US:FDA, 2019[2021-01-23]. https://www.fda.gov/media/125484/download.
[7] European Medicines Agency (EMA). Guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance:quality issues (revision 1)[EB/OL]. UK:EMA, 2014[2021-01-23]. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-similar-biological-medicinal-products-containing-biotechnology-derived-proteins-active_en-0.pdf.
[8] Wang L, Xu GL, Gao K, et al. Progress in research and development of bioactivity determination of antibody-based therapeutics[J]. China Biotechnol (中国生物工程杂志), 2015, 35:101-108.
[9] Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy[J]. Biochem Biophys Res Commun, 2005, 333:328-335.
[10] Melosky B, Reardon DA, Nixon AB, et al. Bevacizumab biosimilars:scientific justification for extrapolation of indications[J]. Future Oncol, 2018, 14:2507-2520.
[11] Zhou M, Song YY, Chen XY, et al. Considerations of clinical trial design and medical review assessment about bevacizumab biosimilar[J]. Chin J Clin Pharmacol (中国临床药理学杂志), 2019, 35:2188-2192.
[12] Zhou LT, Hu YY, Xu LC, et al. Discussion on the quality similarity assessment of bevacizumab biosimilar[J]. China Biotechnol (中国生物工程杂志), 2020, 40:102-109.
[13] Food and Drug Administration. Statistical approaches to evaluate analytical similarity guidance for industry[EB/OL]. US:FDA, 2017[2021-01-23]. https://www.federalregister.gov/documents/2017/09/22/2017-20263/statistical-approaches-to-evaluate-analytical-similarity-draft-guidance-for-industry-availability.
[14] European Medicines Agency (EMA). Draft reflection paper on statistical methodology for the comparative assessment of quality attributes in drug development[EB/OL]. UK:EMA, 2017[2021-01-23]. https://www.ema.europa.eu/en/documents/scientific-guideline/draft-reflection-paper-statistical-methodology-comparative-assessment-quality-attributes-drug_en.pdf.
[15] Seo N, Polozova A, Zhang M, et al. Analytical and functional similarity of Amgen biosimilar ABP 215 to bevacizumab[J]. MAbs, 2018, 10:678-691.
[16] Yu C, Zhang F, Xu G, et al. Analytical similarity of a proposed biosimilar BVZ-BC to bevacizumab[J]. Anal Chem, 2020, 92:3161-3170.
[17] Ferrara N, Hillan KJ, Gerber HP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer[J]. Nat Rev Drug Discov, 2004, 3:391-400.
[18] McFee RM, Rozell TG, Cupp AS. The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle development[J]. Cell Tissue Res, 2012, 349:637-647.
[19] Zhang F, Xu GL, Yu CF, et al. Optimization and application of HUVEC proliferation inhibitory assay[J]. Chin J New Drugs (中国新药杂志), 2015, 24:2317-2323.
[20] Wang L, Xu GL, Gao K, et al. Development of a robust reporter-based assay for the bioactivity determination of anti-VEGF therapeutic antibodies[J]. J Pharm Biomed Anal, 2016, 125:212-218.
[21] Zhang F, Yu CF, Wang WB, et al. Optimization and improvement of conbercept specification[J]. Chin J Pharm Anal (药物分析杂志), 2019, 39:3-12.
[22] Gingras D, Lamy S, Béliveau R. Tyrosine phosphorylation of the vascular endothelial-growth-factor receptor-2(VEGFR-2) is modulated by pho proteins[J]. Biochem J, 2000, 348:273-280.
[23] Adamcic U, Karolina S, Peters C, et al. The effect of bevacizumab on human malignant melanoma cells with functional VEGF/VEGFR2 autocrine and intracrine signaling loops[J]. Neoplasia, 2012, 14:612-623.
[24] Huang CW, Dong HM, Zhou MC, et al. Bevacizumab reduced auto-phosphorylation of VEGFR2 to protect HDM-induced asthma mice[J]. Biochem Biophys Res Commun, 2016, 478:181-186.
[25] Velayudhan J, Chen YF, Rohrbach A, et al. Demonstration of functional similarity of proposed biosimilar ABP 501 to adalimumab[J]. BioDrugs, 2016, 30:321-338.
[26] Xu GL, Zhang F, Yu CF. Application of ECLI in evaluating the binding activity of therapeutic monoclonal antibody to FcγRI[J]. Chin J Pharm Anal (药物分析杂志), 2019, 39:39-44.
[27] Hargreaves CE, Matthew JR, Lee RM, et al. Fcγ receptors:genetic variation, function, and disease[J]. Immunol Rev, 2015, 268:6-24.
[28] Xie LQ, Zhang EH, Xu YP, et al. Demonstrating analytical similarity of trastuzumab biosimilar HLX02 to Herceptin® with a panel of sensitive and orthogonal methods including a novel FcγRⅢa affinity chromatography technology[J]. BioDrugs, 2020, 34:363-379.
[29] Roopenian DC, Akilesh S. FcRn:the neonatal Fc receptor comes of age[J]. Nat Rev Immunol, 2007, 7:715-725.
[30] Stylianos B, Jeffrey VR. Fcγ receptor pathways during active and passive immunization[J]. Immunol Rev, 2015, 268:88-103.
[31] Liu BN, Kan HJ, Bai Y, et al. The discussion on a proposed quality similarity assessment criteria of rituximab biosimilar[J]. Acta Pharm Sin (药学学报), 2019, 54:2118-2125.
[32] Wu X, Wynne C, Xu C, et al. A global phase I clinical study comparing the safety and pharmacokinetics of proposed biosimilar BAT1706 and bevacizumab (Avastin®) in healthy male subjects[J]. BioDrugs, 2019, 33:335-342.
[33] Zhang H, Li QM, Zhu XX, et al. Tolerance, variability, and pharmacokinetics of bevacizumab biosimilars in Chinese healthy male subjects[J]. Cancer Chemother Pharmacol, 2018, 82:615-623.
[34] Wang Y, Fei D, Vanderlaan M, et al. Biological activity of bevacizumab, a humanized anti-VEGF antibody in vitro[J]. Angiogenesis, 2004, 7:335-345.
相关文献:
1.刘伯宁, 阚红金, 白玉, 罗建辉.关于利妥昔单抗生物类似药“质量相似性”评价标准的探讨[J]. 药学学报, 2019,54(11): 2118-2125