药学学报, 2021, 56(7): 1988-1998
引用本文:
陈菲菲, 李畅, 罗毅, 魏梦佳丽, 马倩, 宋捷, 封亮, 贾晓斌, 谭晓斌. 微粒型灵芝孢子β-葡聚糖重塑免疫抑制微环境增强吉西他滨抗肺癌作用[J]. 药学学报, 2021, 56(7): 1988-1998.
CHEN Fei-fei, LI Chang, LUO Yi, WEI Meng-jia-li, MA Qian, SONG Jie, FENG Liang, JIA Xiao-bin, TAN Xiao-bin. Micro-particulate Ganoderma lucidum spore β-glucanin enhances the antitumor activity of gemcitabin via remodeling immunosuppressive microenvironment in Lewis lung cancer[J]. Acta Pharmaceutica Sinica, 2021, 56(7): 1988-1998.

微粒型灵芝孢子β-葡聚糖重塑免疫抑制微环境增强吉西他滨抗肺癌作用
陈菲菲1,2, 李畅1,2, 罗毅1*, 魏梦佳丽1,2, 马倩1,2, 宋捷1,2, 封亮3, 贾晓斌3, 谭晓斌1,2*
1. 南京中医药大学附属中西医结合医院, 江苏 南京 210028;
2. 江苏省中医药研究院, 国家中医药管理局中药释药系统重点研究室, 江苏 南京 210028;
3. 中国药科大学中药学院, 江苏 南京 211198
摘要:
吉西他滨(gemcitabine,GEM)为临床治疗非小细胞肺癌的常用药物。然而,用其反复化疗后依然肿瘤迁延,治疗效果不佳,究其原因是化疗使得机体免疫力下降,肿瘤微环境(tumor microenvironment,TME)中介导免疫逃逸的细胞聚集,T细胞耗竭,使得整体偏向于免疫抑制状态,导致了肿瘤的发展。本研究中的动物实验获得江苏省中医药研究院伦理委员会的批准。在体外实验中观察了微粒型灵芝孢子粉β-葡聚糖(micro-particulate Ganoderma lucidum spore β-glucan,PGSG)对巨噬细胞的免疫调节作用,同时建立了小鼠皮下Lewis lung cancer (LLC)模型,口服PGSG联合GEM化疗给药以观察抗LLC肺癌的作用;流式细胞术分析小鼠肿瘤与脾脏中辅助性T细胞-1(helper T cell-1,Th1)与细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)的比例,以及髓源性抑制细胞(myeloid-derived suppressor cells,MDSC)、肿瘤相关巨噬细胞(tumor-associated macrophages,TAM)与调节性T细胞(regulatory cells,Tregs)的比例。结果显示,PGSG上调了巨噬细胞CD40、CD86、CD80和主要组织相容性抗原(major histocompatibility antigens complex,MHC-Ⅱ)的表达,增强其对中性红的吞噬能力,增加炎症因子的释放。在体内实验中发现,与单独化疗相比,联合给药能够明显延缓小鼠肿瘤发展,显著降低肿瘤与脾脏中MDSC (CD11b+Gr-1-PE+)、M-MDSC (CD11b+Ly6G-Ly6Chigh)、Tregs (CD4+Foxp3+)和M2(F4/80+CD206+)细胞比例,同时Th1(CD4+IFN-γ+T细胞)与CTL (CD8+IFN-γ+T细胞)明显增加。这提示PGSG能够重塑免疫抑制微环境,增强吉西他滨的抗肺癌效果。
关键词:    灵芝孢子      β-葡聚糖      吉西他滨      肿瘤微环境      肿瘤免疫     
Micro-particulate Ganoderma lucidum spore β-glucanin enhances the antitumor activity of gemcitabin via remodeling immunosuppressive microenvironment in Lewis lung cancer
CHEN Fei-fei1,2, LI Chang1,2, LUO Yi1*, WEI Meng-jia-li1,2, MA Qian1,2, SONG Jie1,2, FENG Liang3, JIA Xiao-bin3, TAN Xiao-bin1,2*
1. Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China;
2. Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, China;
3. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
Abstract:
Gemcitabine (GEM) is a commonly used drug in the clinical treatment of non-small cell lung cancer. Due to the accumulation of cells mediating immune escape and T cell depletion after chemotherapy, tumor microenvironment (TME) tends to be immunosuppressive status, which ultimately leads to tumor metastasis. The experimental protocol was approved by the Medical Laboratory Animal Ethics Committee of Jiangsu Provincial Academy of Chinese Medicine. Therefore, we observed the immunomodulatory effects of micro-particulate Ganoderma lucidum spore β-glucan (PGSG) on macrophages in vitro experiments. Next, mice subcutaneous Lewis lung cancer models were established to observe the anti-tumor effects of PGSG through oral administration of PGSG combined with GEM. Flow cytometry analysis was used to analyze the ratio of anti-tumor T cells in tumors and spleen, as well as the proportion of myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM) and regulatory cells (Tregs). The results showed that PGSG can up-regulate the expression of major histocompatibility antigens (MHC-Ⅱ), CD40, CD86 and CD80 on the surface of macrophages, enhance the ability to phagocytosis of neutral red and further mediate the release of interleukin-6 (IL-6), tumor necrosis factor-α(TNF-α), interleukin-4 (IL-4) and interleukin-10 (IL-10). In vivo experiments, combined administration can significantly decrease the volume and weight of tumors, reduce the ratio of MDSC (CD11b+Gr-1+), M-MDSC (CD11b+Ly6G-Ly6Chigh) and Treg (CD4+Foxp3+). At the same time, PGSG promoted the conversion of M2 (F4/80+CD206+) to M1 (F4/80+MHC-Ⅱ+) and enhanced the response of helper T cell-1 (Th1) (CD4+IFN-γ+) and cytotoxic T lymphocyte (CTL) (CD8+IFN-γ+), which is of great significance for killing tumors. These results suggest that PGSG can regulate innate and adaptive antitumor immune responses, reshape the immunosuppressive microenvironment and enhance the anti-lung cancer effect of GEM.
Key words:    Ganoderma lucidum spore    β-glucan    gemcitabine    tumor microenvironment    tumor immunology   
收稿日期: 2021-02-05
DOI: 10.16438/j.0513-4870.2021-0209
基金项目: 国家自然科学基金资助项目(81773947);江苏省医学创新团队项目(CXTDB2017003);南京中医药大学自然科学基金资助项目(XZR2020027).
通讯作者: 谭晓斌,Tel:86-25-52362115,E-mail:njtxb@hotmail.com;罗毅,Tel:86-25-85637121,E-mail:Robertluoyi@126.com
Email: njtxb@hotmail.com;Robertluoyi@126.com
相关功能
PDF(1164KB) Free
打印本文
0
作者相关文章
陈菲菲  在本刊中的所有文章
李畅  在本刊中的所有文章
罗毅  在本刊中的所有文章
魏梦佳丽  在本刊中的所有文章
马倩  在本刊中的所有文章
宋捷  在本刊中的所有文章
封亮  在本刊中的所有文章
贾晓斌  在本刊中的所有文章
谭晓斌  在本刊中的所有文章

参考文献:
[1] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016[J]. CA Cancer J Clin, 2016, 66:7-30.
[2] Guimaraes PPG, Tan M, Tammela T, et al. Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes[J]. J Control Release, 2018, 290:75-87.
[3] Zhang Y, Bush X, Yan B, et al. Gemcitabine nanoparticles promote antitumor immunity against melanoma[J]. Biomaterials, 2019, 189:48-59.
[4] Xiao H, Guo Y, Li B, et al. M2-like tumor-associated macrophage-targeted codelivery of STAT6 inhibitor and IKKβ siRNA induces M2-to-M1 repolarization for cancer immunotherapy with low immune side effects[J]. ACS Cent Sci, 2020, 6:1208-1222.
[5] Huang B, Pan PY, Li Q, et al. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host[J]. Cancer Res, 2006, 66:1123-1131.
[6] Sun H, Gong L, Yu Z, et al. Advances in anti-tumor therapy of myeloid-derived suppressor cells combined with immunological checkpoint inhibitors[J]. Cancer Res (肿瘤防治研究), 2020, 47:716-721.
[7] Mirza Z, Soto ER, Dikengil F, et al. Beta-glucan particles as vaccine adjuvant carriers[J]. Methods Mol Biol, 2017, 1625:143-157.
[8] Wang J. Structure and Bioactivities of Polysaccharides From Ganoderma Lucidum (灵芝多糖的结构及生物活性研究)[D]. Wuhan:Wuhan University, 2010.
[9] Su CH, Tseng YT, Lo KY, et al. Differences in anti-inflammatory properties of water soluble and insoluble bioactive polysaccharides in lipopolysaccharide-stimulated RAW264.7 macrophages[J]. Glycoconj J, 2020, 37:565-576.
[10] Zhang JJ, Chen FF, Yan ZP, et al. Alkali extraction of Ganoderma lucidum β-glucan and its anti-tumor immune regulation[J]. Acta Pharm Sin (药学学报), 2020, 55:512-521.
[11] Xu C, Qin N, Yan C, et al. Isolation, purification, characterization and bioactivities of a glucan from the root of Pueraria lobate[J]. Food Funct, 2018, 9:2644-2652.
[12] Liu BJ, Ning Q, Zhong RL, et al. Effect of lupeol on invasion and metastasis of human hepatoma HepG2 and SK-HEP-1 cells and its mechanism[J]. China J Chin Mater Med (中国中药杂志), 2020, 45:6028-6035.
[13] Zhang J, Meng G, Zhai G, et al. Extraction, characterization and antioxidant activity of polysaccharides of spent mushroom compost of Ganoderma lucidum[J]. Int J Biol Macromol, 2016, 82:432-439.
[14] Wang Y, Liu Y, Yu H, et al. Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum[J]. Carbohydr Polym, 2017, 167:337-344.
[15] Wang C, Hua D, Yan Y. Structural characterization and antioxidant activities of a novel fructan from Achyranthes bidentata blume, a famous medicinal plant in China[J]. Ind Crops Prod, 2015, 70:427-434.
[16] Wang J, Yuan Y, Yue T. Immunostimulatory activities of β-D-glucan from Ganoderma Lucidum[J]. Carbohydr Polym, 2014, 102:47-54.
[17] Farinha I, Duarte P, Pimentel A, et al. Chitin-glucan complex production by Komagataella pastoris:downstream optimization and product characterization[J]. Carbohydr Polym, 2015, 130:455-464.
[18] Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy[J]. Cancer Immunol Immunother, 2009, 58:49-59.
[19] Mantovani A. The growing diversity and spectrum of action of myeloid-derived suppressor cells[J]. Eur J Immunol, 2010, 40:3317-3320.
[20] Liu M, Luo F, Ding C, et al. Dectin-1 activation by a natural product β-glucan converts immunosuppressive macrophages into an M1-like phenotype[J]. J Immunol, 2015, 195:5055-5065.
[21] Chae JS, Shin H, Song Y, et al. Yeast (1→3)-(1→6)-β-D-glucan alleviates immunosuppression in gemcitabine-treated mice[J]. Int J Biol Macromol, 2019, 136:1169-1175.
[22] Terabe M, Matsui S, Park JM, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance:abrogation prevents tumor recurrence[J]. J Exp Med, 2003, 198:1741-1752.
[23] Lu J, Wang S. Mechanisms of myeloid inhibitory cells inducing the production of regulatory T cells[J]. J Cell Mol Immunol (细胞与分子免疫学杂志), 2016, 32:1707-1710.
[24] Sancho D, Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis[J]. Annu Rev Immunol, 2012, 30:491-529.
[25] Pandya U, Dhuldhaj U, Sahay NS. Bioactive mushroom polysaccharides as antitumor:an overview[J]. Nat Prod Res, 2019, 33:2668-2680.
[26] Geller A, Shrestha R, Yan J. Yeast-derived β-glucan in cancer:novel uses of a traditional therapeutic[J]. Int J Mol Sci, 2019, 20:3618.
[27] Tian J, Ma J, Wang S, et al. Increased expression of mGITRL on D2SC/1 cells by particulate β-glucan impairs the suppressive effect of CD4+CD25+ regulatory T cells and enhances the effector T cell proliferation[J]. Cell Immunol, 2011, 270:183-187.
[28] Suzuki E, Kapoor V, Jassar AS, et al. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity[J]. Clin Cancer Res, 2005, 11:6713-6721.
[29] Wu C, Tan X, Hu X, et al. Tumor microenvironment following gemcitabine treatment favors differentiation of immunosuppressive Ly6Chigh myeloid cells[J]. J Immunol, 2020, 204:212-223.
相关文献:
1.张锦锦, 陈菲菲, 严展鹏, 李畅, 孙娥, 罗毅, 谭晓斌.灵芝β-葡聚糖的碱提取及其抗肿瘤免疫调节研究[J]. 药学学报, 2020,55(3): 512-521
2.金晶, 季鸣, 陈晓光.蛋白翻译后修饰与肿瘤免疫治疗[J]. 药学学报, 2019,54(10): 1711-1717
3.刘金宜, 任利文, 李莎, 唐琴, 李婉, 郑湘锦, 王金华, 杜冠华.肿瘤免疫和代谢药物靶点研究进展[J]. 药学学报, 2019,54(10): 1718-1727