药学学报, 2021, 56(8): 2039-2047
引用本文:
赵梦, 李思敏, 张蕾, 丛明慧, 胡立宏, 乔宏志. 植物来源囊泡及其生物医学应用研究进展[J]. 药学学报, 2021, 56(8): 2039-2047.
ZHAO Meng, LI Si-min, ZHANG Lei, CONG Ming-hui, HU Li-hong, QIAO Hong-zhi. Research progress of plant-derived vesicles and their biomedical applications[J]. Acta Pharmaceutica Sinica, 2021, 56(8): 2039-2047.

植物来源囊泡及其生物医学应用研究进展
赵梦1, 李思敏1, 张蕾1, 丛明慧1, 胡立宏1, 乔宏志1,2*
1. 南京中医药大学药学院, 江苏省中药功效物质重点实验室, 江苏 南京 210023;
2. 江苏省中药高效给药系统工程技术研究中心, 江苏 南京 210023
摘要:
植物细胞外囊泡(extracellular vesicles,EVs)是一种由植物细胞分泌的,以脂质双层为基本骨架、包裹各种蛋白和核酸等活性物质的膜性小泡,对植物的生长发育、组织修复和自体防御等过程起重要作用。近年来,参照EVs的分离方法,从植物样本中制备得到细胞外囊泡样纳米粒(extracellular vesicle-like nanoparticles,EVNs)具有与EVs相似的结构组成,也显示出独特的活性功能。本文将上述结构统称为植物来源囊泡(plant-derived vesicles,PDVs),系统介绍了PDVs生源途径、分离表征方法和体内外性质,讨论其作为天然治疗剂和药物功能载体等方面的生物医学应用,最后对该领域存在的问题及未来发展方向提出观点和建议。
关键词:    细胞外囊泡      外泌体      纳米粒      植物      中药      药理作用      药物递送      结构中药学      物质基础     
Research progress of plant-derived vesicles and their biomedical applications
ZHAO Meng1, LI Si-min1, ZHANG Lei1, CONG Ming-hui1, HU Li-hong1, QIAO Hong-zhi1,2*
1. Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China;
2. Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
Abstract:
Plant-derived extracellular vesicles (EVs) are membranous vesicles secreted by plants, which include lipid bilayer as the basic framework and encapsulate various proteins, nucleic acid and other active substances. They play an important role in plant growth and development, tissue repair and self-defense. In recent years, extracellular vesicle-like nanoparticles (EVNs) are prepared from plant samples referring to the separation method of EVs and show unique functions. In this review, the above structures are collectively called plant-derived vesicles (PDVs). The biogenesis, separation and characterization methods, in vivo and in vitro properties of PDVs have been reviewed. The biomedical applications of PDVs as natural therapeutic agents and functional drug carriers are described, and finally some opinions on the existing problems and future prospect in this field are put forward.
Key words:    extracellular vesicle    exosome    nanoparticle    plant    Chinese medicine    pharmacological action    drug delivery    structural Chinese medicine    pharmacodynamic substance basis   
收稿日期: 2020-09-18
DOI: 10.16438/j.0513-4870.2020-1514
基金项目: 中国科协青年人才托举工程项目(2017QNRC001);中央本级重大增减支项目(2060302-1907-04);江苏省高等学校自然科学研究重大项目(20KJA360004);江苏省六大人才高峰项目(SWYY-057);江苏省青蓝工程项目;江苏省研究生创新工程项目(SJCX20_0547,SJCX20_0546,KYCX20_1497).
通讯作者: 乔宏志,Tel:86-25-85811050,E-mail:qiaohz@njucm.edu.cn
Email: qiaohz@njucm.edu.cn
相关功能
PDF(501KB) Free
打印本文
0
作者相关文章
赵梦  在本刊中的所有文章
李思敏  在本刊中的所有文章
张蕾  在本刊中的所有文章
丛明慧  在本刊中的所有文章
胡立宏  在本刊中的所有文章
乔宏志  在本刊中的所有文章

参考文献:
[1] Halperin W, Jensen WA. Ultrastructural changes during growth and embryogenesis in carrot cell cultures[J]. J Ultrastruct Res, 1967, 18:428-443.
[2] Gonorazky G, Laxalt AM, Testerink C, et al. Phosphatidylinositol 4-phosphate accumulates extracellularly upon xylanase treatment in tomato cell suspensions[J]. Plant Cell Environ, 2008, 31:1051-1062.
[3] Regente M, Monzón GC, de la Canal L. Phospholipids are present in extracellular fluids of imbibing sunflower seeds and are modulated by hormonal treatments[J]. J Exp Bot, 2008, 59:553-562.
[4] Xia HC, Zhang CX, Feng F, et al. Biogenesis of multivesicular body and protein sorting:no one of ESCRT, Vps4 and ubiquitination can be missed[J]. Prog Biochem Biophys (生物化学与生物物理进展), 2013, 40:103-117.
[5] Cui Y, Gao JY, He YL, et al. Plant extracellular vesicles[J]. Protoplasma, 2020, 257:3-12.
[6] Zhao ZH, Yu SR, Li M, et al. Isolation of exosome-like nanoparticles and analysis of microRNAs derived from coconut water based on small RNA high-throughput sequencing[J]. J Agric Food Chem, 2018, 66:2749-2757.
[7] Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins[J]. Plant Physiol, 2017, 173:728-741.
[8] Cai Q, Qiao LL, Wang M, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes[J]. Science, 2018, 360:1126-1129.
[9] Li P, Kaslan M, Lee SH, et al. Progress in exosome isolation techniques[J]. Theranostics, 2017, 7:789-804.
[10] Zhang MZ, Viennois E, Prasad M, et al. Edible ginger-derived nanoparticles:a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer[J]. Biomaterials, 2016, 101:321-340.
[11] Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006, 30:3.22. 1-3.22.29.
[12] Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes[J]. Methods, 2015, 87:3-10.
[13] Zarovni N, Corrado A, Guazzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches[J]. Methods, 2015, 87:46-58.
[14] Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery[J]. J Control Release, 2015, 219:396-405.
[15] Ren YS, Mei ZN, Li Y, et al. Exosomes of Rehmannia glutinosa Libosch and their preparation and application:CN, 110302278A[P]. 2019-10-08.
[16] Lozano-Ramos I, Bancu I, Oliveira-Tercero A. et al. Size-exclusion chromatography-based enrichment of extracellular vesicles from urine samples[J]. J Extracell Vesicles, 2015, 4:27369.
[17] Shao HL, Hyungsoon I, Cesar CM, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118:1917-1950.
[18] Zhang HY, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20:332-343.
[19] Davies RT, Kim J, Jang SC, et al. Microfluidic filtration system to isolate extracellular vesicles from blood[J]. Lab Chip, 2012, 12:5202-5210.
[20] Kanwar SS, Dunlay CJ, Simeone DM, et al. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes[J]. Lab Chip, 2014, 14:1891-1900.
[21] Morales-Kastresana A, Musich TA, Welsh JA, et al. High-fidelity detection and sorting of nanoscale vesicles in viral disease and cancer[J]. J Extracell Vesicles, 2019, 8:1597603.
[22] Bachurski D, Schuldner M, Nguyen PH, et al. Extracellular vesicle measurements with nanoparticle tracking analysis-an accuracy and repeatability comparison between NanoSight NS300 and ZetaView[J]. J Extracell Vesicles, 2019, 8:1596016.
[23] Maas SL, Broekman ML, de Vrij J. Tunable resistive pulse sensing for the characterization of extracellular vesicles[J]. Methods Mol Biol, 2017, 1545:21-33.
[24] Szatanek R, Baj-Krzyworzeka M, Zimoch J, et al. The methods of choice for extracellular vesicles (EVs) characterization[J]. Int J Mol Sci, 2017, 18:1153.
[25] Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis[J]. Nanomedicine, 2011, 7:780-788.
[26] Ju SW, Mu JY, Terje D, et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis[J]. Mol Ther, 2013, 21:1345-1357.
[27] Zhuang XY, Deng ZB, Mu JY, et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage[J]. J Extracell Vesicles, 2015, 4:28713.
[28] Cao M, Yan HJ, Han X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J]. J Immunother Cancer, 2019, 7:326.
[29] Deng ZB, Rong Y, Teng Y, et al. Broccoli-derived nanoparticle inhibits mouse colitis by activating dendritic cell AMP-activated protein kinase[J]. Mol Ther, 2017, 25:1641-1654.
[30] Wang BM, Zhuang XY, Deng ZB, et al. Targeted drug delivery to intestinal macrophages by bioactive nanovesicles released from grapefruit[J]. Mol Ther, 2014, 22:522-534.
[31] Raimondo S, Naselli F, Fontana S, et al. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death[J]. Oncotarget, 2015, 6:19514-19527.
[32] Mu JY, Zhuang XY, Wang QL, et al. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles[J]. Mol Nutr Food Res, 2014, 58:1561-1573.
[33] Mei KR, Li Y, Wang SX, et al. Cryo-EM structure of the exocyst complex[J]. Nat Struct Mol Biol, 2018, 25:139-146.
[34] Sharma S, Rasool HI, Palanisamy V, et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy[J]. ACS Nano, 2010, 4:1921-1926.
[35] Zhang MZ, Collins JF, Merlin D. Do ginger-derived nanoparticles represent an attractive treatment strategy for inflammatory bowel diseases?[J]. Nanomedicine, 2016, 11:3035-3037.
[36] Pocsfalvi G, Turiák L, Ambrosone A, et al. Protein biocargo of citrus fruit-derived vesicles reveals heterogeneous transport and extracellular vesicle populations[J]. J Plant Physiol, 2018, 229:111-121.
[37] Pérez-Bermúdez P, Blesa J, Soriano JM, et al. Extracellular vesicles in food:experimental evidence of their secretion in grape fruits[J]. Eur J Pharm Sci, 2017, 98:40-50.
[38] Xiao J, Feng SY, Wang X, et al. Identification of exosome-like nanoparticle-derived microRNAs from 11 edible fruits and vegetables[J]. Peer J, 2018, 6:e5186.
[39] Zhang T, Zhao YL, Zhao JH, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nat Plants, 2016, 2:16153.
[40] Teng Y, Ren Y, Sayed M, et al. Plant-derived exosomal microRNAs shape the gut microbiota[J]. Cell Host Microbe, 2018, 24:637-652.
[41] Zhou Z, Li XH, Liu JX, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza a viruses[J]. Cell Res, 2015, 25:39-49.
[42] Baldini N, Torreggiani E, Roncuzzi L, et al. Exosome-like nanovesicles isolated from Citrus limon L. exert antioxidative effect[J]. Curr Pharm Biotechnol, 2018, 19:877-885.
[43] Iravani S, Varma RS. Plant-derived edible nanoparticles and miRNAs:emerging frontier for therapeutics and targeted drugdelivery[J]. ACS Sustain Chem Eng, 2019, 7:8055-8069.
[44] Maroto R, Zhao YX, Jamaluddin M, et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses[J]. J Extracell Vesicles, 2017, 6:1359478.
[45] Yuana Y, Böing AN, Grootemaat AE, et al. Handling and storage of human body fluids for analysis of extracellular vesicles[J]. J Extracell Vesicles, 2015, 4:29260.
[46] Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527:329-335.
[47] de la Canal L, Pinedo M. Extracellular vesicles:a missing component in plant cell wall remodeling[J]. J Exp Bot, 2018, 69:4655-4658.
[48] Rome S. Biological properties of plant-derived extracellular vesicles[J]. Food Funct, 2019, 10:529-538.
[49] Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies[J]. Biochim Biophys Acta, 2014, 1841:108-120.
[50] Li M, Miao JZ, Xu S. Recent advances in research and development of new small molecule immunosuppressants for inflammator[J]. Acta Pharm Sin (药学学报), 2018, 53:1290-1302.
[51] Sundaram K, Miller DP, Kumar A, et al. Plant-derived exosomal nanoparticles inhibit pathogenicity of porphyromonas gingivalis[J]. iScience, 2019, 21:308-327.
[52] Lee R, Ko HJ, Kim K, et al. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin[J]. J Extracell Vesicles, 2020, 9:1703480.
[53] Du JC, Liang Z, Xu JT, et al. Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNAm7[J]. Sci China Life Sci (中国科学:生命科学), 2018, 48:469-481.
[54] Ping Y, Li YP, Lü S, et al. A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction[J]. Biomed Pharmacother, 2020, 124:109826.
[55] Gudbergsson JM, Jønsson K, Simonsen JB, et al. Systematic review of targeted extracellular vesicles for drug delivery-considerations on methodological and biological heterogeneity[J]. J Control Release, 2019, 306:108-120.
[56] Teng Y, Mu JY, Hu X, et al. Grapefruit-derived nanovectors deliver miR-18a for treatment of liver metastasis of colon cancer by induction of M1 macrophages[J]. Oncotarget, 2016, 7:25683-25697.
[57] Wang QL, Zhuang XY, Mu JY, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids[J]. Nat Commun, 2013, 4:1867.
[58] Zhang MZ, Xiao B, Wang H, et al. Edible ginger-derived nanolipids loaded with doxorubicin as a novel drug-delivery approach for colon cancer therapy[J]. Mol Ther, 2016, 24:1783-1796.
[59] Zhuang XY, Teng Y, Samykutty A, et al. Grapefruit-derived nanovectors delivering therapeutic miR17 through an intranasal route inhibit brain tumor progression[J]. Mol Ther, 2016, 24:96-105.
[60] Woith E, Melzig MF. Extracellular vesicles from fresh and dried plants-simultaneous purification and visualization using gel electrophoresis[J]. Int J Mol Sci, 2019, 20:357.
相关文献:
1.李思敏, 何凤军, 秦琳茜, 杨凯宇, 乔宏志.药食两用植物细胞外囊泡样纳米粒的制备和性能研究[J]. 药学学报, 2021,56(8): 2086-2092
2.朱耀萱, 陈伟, 王振中, 乔宏志, 狄留庆.麻杏石甘汤抗菌活性的空间异质性及其物理结构基础[J]. 药学学报, 2021,56(8): 2112-2118
3.邓赛, 张灵敏, 王萍, 李仕颖, 林潮金, 傅小媚, 余细勇.人工外泌体共递送siRNA和蛋白的递送系统的设计及体外评价[J]. 药学学报, 2020,55(1): 139-145
4.陈士林, 孙奕, 万会花, 张晗, 赵庆贺.中药与天然药物2015~2020年研究亮点评述[J]. 药学学报, 2020,55(12): 2751-2776
5.田雪梅, 张君, 荣华, 张莉华, 马晓慧, 孙立.植物微小RNA跨界调控机制及其应用研究进展[J]. 药学学报, 2020,55(6): 1137-1146
6.叶圣洁, 胡凯莉.外泌体作为药物递送载体在脑部疾病治疗中的研究进展[J]. 药学学报, 2020,55(7): 1540-1548
7.张盈盈, 陈丽青, 刘璇, 辛欣, 孟令玮, 金明姬, 高钟镐, 黄伟.外泌体作为药物递送载体的研究进展[J]. 药学学报, 2019,54(6): 1010-1016
8.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报, 2017,52(7): 1110-1116
9.马文苑, 谢媛媛, 王义明, 罗国安.细胞膜色谱技术在中药质量评价中的应用与思考[J]. 药学学报, 2017,52(12): 1827-1838
10.徐晶晶, 尚明英, 徐风, 李耀利, 刘广学, 王璇, 蔡少青.临床常用中西药血药浓度的比较与分析[J]. 药学学报, 2017,52(8): 1222-1234
11.于菲菲 邹 豪 钟延强.逐层组装技术在药物递送领域应用的研究进展[J]. 药学学报, 2012,47(3): 332-338
12.秦海林;赵天增.核磁共振氢谱鉴别植物中药的研究[J]. 药学学报, 1999,34(1): 58-62
13.孙漩嵘, 张隆超, 施绮雯, 李汉兵, 赵航.细胞-纳米药物递送系统的研究进展[J]. 药学学报,