药学学报, 2021, 56(8): 2127-2135
引用本文:
张文, 余雅婷, 赵立杰, 张俊鸿, 王优杰, 沈岚, 杜若飞, 洪燕龙, 冯怡. 共聚维酮改善金银花粉末压缩成型性能的研究[J]. 药学学报, 2021, 56(8): 2127-2135.
ZHANG Wen, YU Ya-ting, ZHAO Li-jie, ZHANG Jun-hong, WANG You-jie, SHEN Lan, DU Ruo-fei, HONG Yan-long, FENG Yi. Improving compactibility properties of Lonicera Japonica Flos by Plasdone S-630[J]. Acta Pharmaceutica Sinica, 2021, 56(8): 2127-2135.

共聚维酮改善金银花粉末压缩成型性能的研究
张文1, 余雅婷1, 赵立杰1*, 张俊鸿2, 王优杰1, 沈岚3, 杜若飞1, 洪燕龙4, 冯怡1*
1. 上海中医药大学, 中药现代制剂技术教育部工程研究中心, 上海 201203;
2. 福建省片仔癀天然医药研发企业重点实验室, 福建 漳州 363000;
3. 上海中医药大学中药学院, 上海 201203;
4. 上海中医药大学, 中医健康服务协同创新中心, 上海 201203
摘要:
本文通过研究粒子修饰技术改善中药生粉类药材的流动性和压缩成型性,为满足下一步制剂制备的需求。以金银花粉末作为模型药物,采用流化床底喷技术,使用共聚维酮作为修饰剂,制备修饰粒子;分别测定各粉体的粉体学性质、片剂压缩成型参数以及崩解时限和溶出度,并结合扫描电镜技术对修饰前后粉体粒子和压制的片剂表面形态进行表征。结果表明,经过粒子修饰后,金银花粉体粒子粒径增大,其粉体的流动性、可压缩性以及成型性均得到一定的改善,并且其崩解时限也有一定的降低,体外溶出度也不受影响。因此,本研究可以为中药生粉类药材因流动性、可压性等粉体属性较差而不能满足制剂生产需要这一共性问题提供参考和思路。
关键词:    金银花      粒子修饰      流动性      压缩成型性      流化床技术     
Improving compactibility properties of Lonicera Japonica Flos by Plasdone S-630
ZHANG Wen1, YU Ya-ting1, ZHAO Li-jie1*, ZHANG Jun-hong2, WANG You-jie1, SHEN Lan3, DU Ruo-fei1, HONG Yan-long4, FENG Yi1*
1. Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
2. Fujian Pien Tze Huang Enterprise Key Laboratory of Natural Medicine Research and Development, Zhangzhou 363000, China;
3. College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
4. Health Service Collaborative Innovation Center of Shanghai Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
Abstract:
To improve the fluidity and compactibility properties of raw powders of traditional Chinese medicine by particle modification technology, Lonicera Japonica Flos was used as a model drug, fluidized bed bottom spray technology was used, and Plasdone S-630 was used as a modifier to prepare modified particles. The powder properties, tablet compactibility parameters, disintegration time and dissolution were measured. The surface morphology of the powder particles before and after modification and compressed tablets were characterized by combining with scanning electron microscopy technology. The results showed that the particle size of Lonicera Japonica powder has been increased after particle modification, the fluidity, compressibility and compactibility of the powder have been improved to some extent, the disintegration time has also been reduced, and the dissolution in vitro is not affected. Therefore, this study can provide reference and ideas for the common problem that raw powder of traditional Chinese medicine that cannot meet the needs of preparation production due to poor powder properties such as fluidity and compressibility.
Key words:    Lonicera Japonica    particle modification    fluidity    compactibility    fluid-bed technology   
收稿日期: 2021-04-08
DOI: 10.16438/j.0513-4870.2021-0514
基金项目: 国家自然科学基金资助项目(82003958);上海市自然科学基金资助项目(20ZR1458400).
通讯作者: 赵立杰,Tel:86-21-51322431,E-mail:zhaolijie761029@126.com;冯怡,Tel:86-21-51322493,E-mail:fyi@vip.sina.com
Email: zhaolijie761029@126.com;fyi@vip.sina.com
相关功能
PDF(581KB) Free
打印本文
0
作者相关文章
张文  在本刊中的所有文章
余雅婷  在本刊中的所有文章
赵立杰  在本刊中的所有文章
张俊鸿  在本刊中的所有文章
王优杰  在本刊中的所有文章
沈岚  在本刊中的所有文章
杜若飞  在本刊中的所有文章
洪燕龙  在本刊中的所有文章
冯怡  在本刊中的所有文章

参考文献:
[1] Dong QQ, Zhou MM, Lin X, et al. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying[J]. Eur J Pharm Sci, 2018, 119:3305-3311.
[2] Quan XL, Zhang JC, Mu LC, et al. Recovering boiled powder and saving medicinal materials[J]. Chin J New Drugs (中国新药杂志), 2012, 21:470-474.
[3] Dai SY. Study on Intelligent Design Method of Direct Compression Prescription of Traditional Chinese Medicine (中药直接压片处方智能设计方法研究) [D]. Beijing:Beijing University of Chinese Medicine, 2019.
[4] Li Z. Design, Tableting Performance Improvements and Mechanism Analysis about TCM-Based Composite Particles (中药复合粒子设计及其压片关键性能改善与机制研究) [D]. Shanghai:Shanghai University of Traditional Chinese Medicine, 2019.
[5] Nian JJ, Shi YJ, Guo DY, et al. Research on application of powder modification and particle recombination in traditional Chinese medicine preparations[J]. China Pharm (中国药房), 2014, 25:2578-2580.
[6] Li Z, Lin X, Shen L, et al. Composite particles based on particle engineering for direct compaction[J]. Int J Pharm, 2017, 519:272-286.
[7] Ren GL, Han L, Jiang H, et al. Improvement of mixing uniformity of Xiaojin pills by particles design technology for Chinese materia medica[J]. Chin J Pharm (中国医药工业杂志), 2017, 48:191-194.
[8] Chen SJ, Zhu JB, Qi XL. Evaluation of powder properties of commonly used excipients for direct powder compression[J]. Chin J Pharm (中国医药工业杂志), 2013, 44:1010-1013.
[9] Wang S, Li J, Lin X, et al. Novel coprocessed excipients composed of lactose, HPMC, and PVPP for tableting and its application[J]. Int J Pharm, 2015, 486:370-379.
[10] Han L, Wei J, Zhang Y. Application of powder surface modification technology in Chinese medicine dispersible tablets[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2010, 21:920-922.
[11] Jono K, Ichikawa H, Miyamoto M, et al. A review of particulate design for pharmaceutical powders and their production by spouted bed coating[J]. Powder Technol, 2000, 113:269-277.
[12] Llusa M, Faulhammer E, Biserni S, et al. The effects of powder compressibility, speed of capsule filling and pre-compression on plug densification[J]. Int J Pharm, 2014, 471:182-188.
[13] Solomon S, Ziaee A, Giraudeau L, et al. Particle engineering of excipients:a mechanistic investigation into the compaction properties of lignin and[co] -spray dried lignin[J]. Int J Pharm, 2019, 563:237-248.
[14] Yu YT, Zhao LJ, Xu JJ, et al. Influence of MCC on direct pressure properties of powder extracted from Shufeng Jiedu formula[J]. Chin Tradit Herb Drugs (中草药), 2019, 50:4041-4050.
[15] Tian Y, Wang YJ, Zhang Z, et al. Research on the effect of excipients on the herb extract compression characteristics base on mathematical models[J]. Chin J New Drugs (中国新药杂志), 2017, 26:588-592.
[16] Yang RZ, Zhao LJ, Huang YS, et al. Exploratory study on the preparation of high drug loading granules with traditional Chinese medicine raw powder as carriers[J]. China J Chin Mater Med (中国中药杂志), 2021, 46:1-10.
[17] Etti CJ, Yusof YA, Chin NL, et al. Tableting properties and compression models of Labisia pumila tablets[J]. J Diet Suppl, 2017, 14:132-145.
[18] Wang F, Xu B, Zhang KF, et al. Mechanism of "unification of drugs and excipients" for Chinese medicine semi-extract based on powder compression behavior analysis[J]. China J Chin Mater Med (中国中药杂志), 2020, 45:274-284.
[19] Yu LF, Hu RF, Su D, et al. Characterizing flowability of micro-crystalline cellulose and its visualizing the correlation of the performance parameters[J]. Acta Pharm Sin (药学学报), 2018, 53:806-811.
[20] Luo Y, Wu F, Shen L, et al. Improvement on the tableting properties of traditional Chinese medicine extracts by fluid-bed coating and pore forming[J]. Acta Pharm Sin (药学学报), 2020, 55:2728-2735.
[21] Zhou MM, Wang YJ, Fei W, et al. Development on porous particles of Pueraria lobatae Radix for improving its compactibility and dissolution[J]. RSC Adv, 2018, 8:24250-24260.
[22] Tanimura S, Tahara K, Takeuchi H. Spray-dried composite particles of erythritol and porous silica for orally disintegrating tablets prepared by direct tableting[J]. Powder Technol, 2015, 286:444-450.
[23] Cao HH, Duo RF, Yang JN, et al. Effect of microcrystalline cellulose on compressibility and moldability of Galla chinensis extract[J]. Chin Tradit Herb Drugs (中草药), 2014, 45:1072-1077.
[24] Li JZ, Wu F, Lin X. Novel application of hydroxypropyl methyl-cellulose to improving direct compaction properties of tablet fillers by co-spray drying[J]. RSC Adv, 2015, 5:69289-69298.
[25] Szepes A, Szabó-Révész P, Bajdik J, et al. Characterization and utilization of starches extracted from Florencia and Waxy Maize Hybrids for tablet formulation:compaction behaviour and tablet properties[J]. Am J Plant Sci, 2014, 5:787-798.
[26] Nordstrm J, Alderborn G. The granule porosity controls the loss of compactibility for both dryand wet-processed cellulose granules but at different rate[J]. J Pharm Sci, 2015, 104:2029-2039.
[27] Qiao HZ, Di LQ, Ping QN, et al. Structural Chinese medicine:a new research field on the pharmacodynamic substance basis of traditional Chinese medicine[J]. China J Chin Mater Med (中国中药杂志), 2021, 46:2443-2448.