药学学报, 2021, 56(8): 2241-2247
引用本文:
林毅, 杨春启, 连闻雨, 肖成荣, 谭洪玲, 高月, 王宇光. 麦冬皂苷D通过铁死亡途径减轻麦冬皂苷D'所致心肌细胞损伤[J]. 药学学报, 2021, 56(8): 2241-2247.
LIN Yi, YANG Chun-qi, LIAN Wen-yu, XIAO Cheng-rong, TAN Hong-ling, GAO Yue, WANG Yu-guang. Ophiopogonin D interferes with ferroptosis to reduce the damage of cardiomyocytes induced by ophiopogonin D'[J]. Acta Pharmaceutica Sinica, 2021, 56(8): 2241-2247.

麦冬皂苷D通过铁死亡途径减轻麦冬皂苷D'所致心肌细胞损伤
林毅1, 杨春启1,2, 连闻雨1,3, 肖成荣1, 谭洪玲1, 高月1*, 王宇光1*
1. 军事科学院, 军事医学研究院, 辐射医学研究所, 北京 100850;
2. 安徽医科大学, 安徽 合肥 230032;
3. 广东药科大学, 广东 广州 510006
摘要:
本文研究麦冬皂苷D (ophiopogonin D,OPD)对麦冬皂苷D'(ophiopogonin D',OPD')诱导大鼠心肌细胞损伤的干预作用及可能机制,为中药麦冬的临床使用提供相关的实验依据。采用CCK-8(cell counting kit-8)法检测麦冬皂苷D'及麦冬皂苷D与麦冬皂苷D'共处理对大鼠心肌细胞存活率的影响;流式细胞仪检测细胞内活性氧(reaction oxygen species,ROS)含量;FerroOrange荧光探针检测细胞内Fe2+含量变化;相应的试剂盒检测细胞内谷胱甘肽(glutathione,GSH)及谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)含量的变化;Western blot检测转铁蛋白受体1(transferrin receptor 1,TFR1)、环氧合酶2(cyclooxygenase 2,COX2)、NADPH氧化酶1(NADPH oxidase1,NOX1)、长链脂酰辅酶A合成酶4(long-chain acyl-CoA synthetase 4,ACSL4)、阳离子氨基酸转运蛋白11(cationicamino acid transporter 11,SLC7A11)、谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)及铁蛋白重链1(ferritin heavy chain 1,FTH1)等铁死亡相关蛋白表达的变化,探究麦冬皂苷D保护心肌细胞损伤的作用机制是否与铁死亡有关。实验结果显示,1 μmol·L-1的麦冬皂苷D'可显著诱导铁死亡相关蛋白的表达,导致细胞Fe2+、ROS和GSH-Px含量明显升高,GSH含量明显降低;经不同浓度麦冬皂苷D (0.5、1和2 μmol·L-1)处理后在一定程度上逆转麦冬皂苷D'引起的心肌细胞损伤,并且剂量在1~2 μmol·L-1时效果最佳。结果表明,麦冬皂苷D可干预麦冬皂苷D'引起的铁死亡,进而对大鼠心肌细胞产生保护作用。
关键词:    麦冬      麦冬皂苷D      麦冬皂苷D'      心肌细胞      铁死亡     
Ophiopogonin D interferes with ferroptosis to reduce the damage of cardiomyocytes induced by ophiopogonin D'
LIN Yi1, YANG Chun-qi1,2, LIAN Wen-yu1,3, XIAO Cheng-rong1, TAN Hong-ling1, GAO Yue1*, WANG Yu-guang1*
1. Institute of Radiation Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China;
2. Anhui Medical University, Hefei 230032, China;
3. Guangdong Pharmaceutical University, Guangzhou 510006, China
Abstract:
This study investigated the intervention effect and possible mechanism of ophiopogonin D (OPD) in protecting cardiomyocytes against ophiopogonin D' (OPD')-induced injury, and provided relevant experimental data for the clinical use of Ophiopogon japonicas. Cell counting kit-8 (CCK-8) assay was used to evaluate the effect of OPD and OPD' on H9c2 cell viability. The content of reaction oxygen species (ROS) in cells were detected by flow cytometry. The contents of Fe2+ in cells were detected by FerroOrange's fluorescence imaging. The content of glutathione (GSH) and glutathione peroxidase (GSH-Px) were detected by kits. The expression of transferrin receptor 1 (TFR1), cyclooxygenase 2 (COX2), NADPH oxidase 1 (NOX1), long-chain acyl-CoA synthetase 4 (ACSL4), cationic amino acid transporter 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and ferritin heavy chain 1 (FTH1) was detected by Western blot. Results showed that OPD' (1 μmol·L-1) significantly induced the expression of ferroptosis-related proteins, the contents of Fe2+, ROS, and GSH-Px were increased, and the content of GSH were decreased. In addition, different concentrations of OPD (0.5, 1, and 2 μmol·L-1) could partially reverse the myocardial cell injury caused by OPD', and the best effect was obtained when the dose range was 1-2 μmol·L-1. The experimental results show that OPD can interfere with the ferroptosis caused by OPD', and then have a protective effect on H9c2 cells.
Key words:    Ophiopogon japonicas    ophiopogonin D    ophiopogonin D'    cardiomyocyte    ferroptosis   
收稿日期: 2021-03-24
DOI: 10.16438/j.0513-4870.2021-0419
基金项目: 国家自然科学基金资助项目(81873032).
通讯作者: 王宇光,Tel:86-10-66932201,E-mail:wangyg@bmi.ac.cn;高月,Tel:86-10-66931312,E-mail:gaoyue@bmi.ac.cn
Email: wangyg@bmi.ac.cn;gaoyue@bmi.ac.cn
相关功能
PDF(572KB) Free
打印本文
0
作者相关文章
林毅  在本刊中的所有文章
杨春启  在本刊中的所有文章
连闻雨  在本刊中的所有文章
肖成荣  在本刊中的所有文章
谭洪玲  在本刊中的所有文章
高月  在本刊中的所有文章
王宇光  在本刊中的所有文章

参考文献:
[1] Ren SJ, Wang YG, Gao Y. Cytotoxicity of ophiopogonin D' for rat H9c2 cardiomyocytes[J]. Chin J Pharmacol Toxicol (中国药理学与毒理学杂志), 2017, 31:325-331.
[2] You WT, Zhou T, Ma ZC, et al. Ophiopogonin D maintains Ca2+ homeostasis in rat cardiomyocytes in vitro by upregulating CYP2J3/EETs and suppressing ER stress[J]. Acta Pharmacol Sin, 2016, 37:368-381.
[3] Huang XY, Wang YG, Zhang Z, et al. Ophiopogonin D and EETs ameliorate Ang II-induced inflammatory responses via activating PPAR α in HUVECs[J]. Biochem Biophys Res Commun, 2017, 490:123-133.
[4] Wang J, Wang NN, Tan HL, et al. Ophiopogonin D protects cardiomyocytes against ophiopogonin D'-induced injury through suppressing endoplasmic reticulum stress[J]. China J Chin Mat Med (中国中药杂志), 2019, 44:154-159.
[5] Li BW, Wang ZW. Ferroptosis is a new form of regulatory cell death[J]. Basic Clin Med (基础医学与临床), 2019, 39:247-251.
[6] Li WY, Xia ZY, Li W, et al. Role of ferroptosis in myocardial ischemia-reperfusion injury[J]. J Chin Pract Diagn Ther (中华实用诊断与治疗杂志), 2019, 33:93-96.
[7] Dixon S, Lemberg K, Lamprecht M, et al. Ferroptosis:an irondependent form of nonapoptotic cell death[J]. Cell, 2012, 149:1060-1072.
[8] Li PF, Wang QY. Mechanisms of ferroptosis and its involvement in ovarian cancer[J]. J Int Obstet Gynecol (国际妇产科学杂志), 2019, 46:458-461.
[9] Lei P, Bai T, Sun Y. Mechanisms of ferroptosis and relations with regulated cell death:a review[J]. Front Physiol, 2019, 10:139.
[10] Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15:234-245.
[11] Bennett BD, Gralnick JA. Mechanisms of toxicity by and resistance to ferrous iron in anaerobic systems[J]. Free Radic Biol Med, 2019, 140:167-171.
[12] Zeng B, Zhang P, Zheng M, et al. Detection and identification of the oxidizing species generated from the physiologically important Fenton-like reaction of iron(II) -citrate with hydrogen peroxide[J]. Arch Biochem Biophys, 2019, 15:39-45.
[13] Valko M, Jomova K, Rhodes CJ, et al. Redoxand non-redoxmetal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016, 90:1-37.
[14] Latunde-Dada GO. Ferroptosis:role of lipid peroxidation, iron and ferritinophagy[J]. Biochim Biophys Acta Gen Subj, 2017, 1861:1893-1900.
[15] Lewerenz J, Hewett SJ, Huang Y, et al. The cystine/glutamate antiporter system x(c) (-) in health and disease:from molecular mechanisms to novel therapeutic opportunities[J]. Antioxid Redox Signal, 2013, 18:522-555.
[16] Jana T, Tzveta S, Zlatina N, et al. Effect of endurance training on diurnal rhythms of superoxide dismutase activity, glutathione and lipid peroxidation in plasma of pinealectomized rats[J]. Neurosci Lett, 2020, 716:134637.
[17] Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2016, 13:91-98.
[18] Daiber A, Di Lisa F, Oelze M, et al. Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function[J]. Br J Pharmacol, 2017, 174:1670-1689.
[19] Youn JY, Zhou J, Cai H. Bone morphogenic protein 4 mediates NOX1-dependent eNOS uncoupling, endothelial dysfunction, and COX2 induction in type 2 diabetes mellitus[J]. Mol Endocrinol, 2015, 29:1123-1133.
相关文献:
1.孟晨, 袁彩华, 张晨晨, 温明达, 高艳红, 丁小余, 张赢予, 张朝.麦冬皂苷D通过减轻内质网应激对阿霉素所致心肌损伤产生保护作用[J]. 药学学报, 2014,49(8): 1117-1123
2.杨秀伟;吴云山;崔育新;刘雪辉;肖诗鹰.卷丹中新甾体皂苷的分离和鉴定[J]. 药学学报, 2002,37(11): 863-866