药学学报, 2021, 56(8): 2295-2301
引用本文:
郭梦月, 于景盛, 姜汶君, 庞晓慧. 基于DNA宏条形码技术的中药材苦杏仁表面真菌多样性研究[J]. 药学学报, 2021, 56(8): 2295-2301.
GUO Meng-yue, YU Jing-sheng, JIANG Wen-jun, PANG Xiao-hui. Analysis of fungal diversity on the surface of Armeniacae Semen Amarum using a DNA metabarcoding technique[J]. Acta Pharmaceutica Sinica, 2021, 56(8): 2295-2301.

基于DNA宏条形码技术的中药材苦杏仁表面真菌多样性研究
郭梦月1,2, 于景盛1,2, 姜汶君1,2, 庞晓慧1,2*
1. 中国医学科学院、北京协和医学院药用植物研究所, 北京 100193;
2. 中药资源教育部工程研究中心, 北京 100193
摘要:
苦杏仁为药食两用品种,因其富含油脂等营养物质而易受到真菌污染。本研究基于DNA宏条形码技术对苦杏仁中污染真菌的多样性进行分析,为其安全使用提供参考依据。收集来自4个药材市场和3种炮制规格的苦杏仁样品共12批,提取真菌DNA并扩增ITS2序列,基于Illumina MiSeq PE300平台进行高通量测序。结果表明子囊菌门Ascomycota是苦杏仁污染真菌中的最优势菌群。在属水平,除样品SW1_P中最优势菌群为Diutina外,其余样品中最优势菌群均为曲霉属Aspergillus。共准确鉴定到3种有害真菌,分别是黄曲霉Aspergillus flavusWallemiasebi和少根根霉Rhizopus arrhizus。此外,不同收集地的苦杏仁样品中葡萄座腔菌目Botryosphaeriales和链格孢属Alternaria的相对丰度存在显著差异,不同炮制规格的苦杏仁样品中肉座菌目Hypocreales和枝孢属Cladosporium的相对丰度存在显著差异。综上,DNA宏条形码技术可有效阐明中药苦杏仁中污染真菌多样性,快速检测药材中潜在产毒真菌,为真菌毒素污染防控提供早期风险预警。
关键词:    苦杏仁      DNA宏条形码      高通量测序      真菌多样性      ITS2     
Analysis of fungal diversity on the surface of Armeniacae Semen Amarum using a DNA metabarcoding technique
GUO Meng-yue1,2, YU Jing-sheng1,2, JIANG Wen-jun1,2, PANG Xiao-hui1,2*
1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
2. Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
Abstract:
Medicinal and edible Armeniacae Semen Amarum (ASA) is susceptible to fungal contamination because it is rich in oil and other nutrients. In this study, the fungal community diversity in ASA samples was analyzed based on a DNA metabarcoding technique to provide evidence for its safe use. Twelve batches of ASA samples samples from four medicinal material markets and three processing approaches were collected. Total DNA was extracted, the ITS2 sequences were amplified, and high-throughput sequencing was performed using the Illumina MiSeq PE300 platform. The results show that Ascomycota was the most dominant fungus in ASA samples. The predominant genus in sample SW1_P was Diutina, whereas the most predominant genus in the other samples was Aspergillus. Three harmful fungi were identified, namely, Aspergillus flavus, Wallemia sebi, and Rhizopus arrhizus. In addition, significant differences were observed in the relative abundance of Botryosphaeriales and Alternaria in ASA samples from different collection sites. Meanwhile, there were significant differences in the relative abundance of Hypocreales and Cladosporium in ASA samples from different processing approaches. In summary, the DNA metabarcoding technique can effectively clarify the fungal community diversity and quickly detect potential toxigenic fungi in ASA samples, thus providing a warning for mycotoxin contamination.
Key words:    Armeniacae Semen Amarum    DNA metabarcoding    high-throughput sequencing    fungal diversity    ITS2   
收稿日期: 2021-01-22
DOI: 10.16438/j.0513-4870.2021-0119
基金项目: 中国医学科学院医学与健康科技创新工程项目(2017-I2M-1-013).
通讯作者: 庞晓慧,Tel:86-10-57833051,E-mail:xhpang@implad.ac.cn
Email: xhpang@implad.ac.cn
相关功能
PDF(673KB) Free
打印本文
0
作者相关文章
郭梦月  在本刊中的所有文章
于景盛  在本刊中的所有文章
姜汶君  在本刊中的所有文章
庞晓慧  在本刊中的所有文章

参考文献:
[1] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典一部) [M]. Part 1. Beijing:China Medical Science Press, 2020:210.
[2] Li K, Shi Q, Zhu H, et al. Chemical compositions in bitter almond[J]. J Northwest Forest Univ (西北林学院学报), 2004, 19:124-126.
[3] He X, Wu L, Wang W, et al. Amygdalin-a pharmacological and toxicological review[J]. J Ethnopharmacol, 2020, 254:112717.
[4] Zhou Z, Gao N, Wang Y, et al. Clinical studies on the treatment of novel coronavirus pneumonia with traditional Chinese medicinea literature analysis[J]. Front Pharmacol, 2020, 11:560448.
[5] Zhang L, Dou XW, Zhang C, et al. A review of current methods for analysis of mycotoxins in herbal medicines[J]. Toxins (Basel), 2018, 10:65.
[6] Tan J, Zheng R, Wang W, et al. Simultaneous determination of aflatoxins and zearalenone in Chinese crude drugs by high performance liquid chromatography-tandem mass spectrometry[J]. Lishizhen Med Mater Med Res (时珍国医国药), 2012, 23:2469-2472.
[7] Wang W, Xu H, Chen H, et al. Separation and molecular identification of fungal contamination on surface of 15 Chinese herbal medicines[J]. China J Chin Mater Med (中国中药杂志), 2013, 38:1910-1914.
[8] Zheng R, Xu H, Wang W, et al. Determination of aflatoxin B1, B 2, G1, G2 in Armeniacae Semen Amarum by high-performance liquid chromatography-tandem mass spectrometry[J]. China J Chin Mater Med (中国中药杂志), 2013, 38:3534-3538.
[9] Taberlet P, Coissac E, Pompanon F, et al. Towards next-generation biodiversity assessment using DNA metabarcoding[J]. Mol Ecol, 2012, 21:2045-2050.
[10] Nilsson RH, Anslan S, Bahram M, et al. Mycobiome diversity:high-throughput sequencing and identification of fungi[J]. Nat Rev Microbiol, 2019, 17:95-109.
[11] López-Angulo J, de la Cruz M, Chacón-Labella J, et al. The role of root community attributes in predicting soil fungal and bacterial community patterns[J]. New Phytol, 2020, 228:1070-1082.
[12] Straumfors A, Foss OAH, Fuss J, et al. The inhalable mycobiome of sawmill workers:exposure characterization and diversity[J]. Appl Environ Microbiol, 2019, 85:e01448-19.
[13] White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[M]//Gelfand DH, Sninsky JJ, White TJ. PCR Protocols a Guide to Methods and Applications. San Diego:Innis Academic, 1990:315-322.
[14] Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Med, 2010, 7:335-336.
[15] Edgar RC. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10:996-998.
[16] Edgar RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26:2460-2461.
[17] Nilsson RH, Larsson KH, Taylor AFS, et al. The UNITE database for molecular identification of fungi:handling dark taxa and parallel taxonomic classifications[J]. Nucleic Acids Res, 2019, 47:D259-D264.
[18] Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75:7537-7541.
[19] Xia F, Chen X, Guo MY, et al. High-throughput sequencingbased analysis of endogenetic fungal communities inhabiting the Chinese Cordyceps reveals unexpectedly high fungal diversity[J]. Sci Rep, 2016, 6:33437.
[20] Guo M, Jiang W, Luo J, et al. Analysis of the fungal community in Ziziphi Spinosae Semen through high-throughput sequencing[J]. Toxins (Basel), 2018, 10:494.
[21] Guo M, Jiang W, Yang M, et al. Characterizing fungal communities in medicinal and edible Cassiae Semen using high-throughput sequencing[J]. Int J Food Microbiol, 2020, 319:108496.
[22] Jiang W, Guo M, Yang M, et al. High-throughput analysis of fungal communities in Myristicae Semen[J]. LWT-Food Sci Technol, 2020, 128:109499.
[23] Yu J, Guo M, Jiang W, et al. Assessment of the microbiome and potential aflatoxin associated with the medicinal herb Platycladus orientalis[J]. Front Microbiol, 2020, 11:582679.
[24] Rocha-Miranda F, Venâncio A. Mycotoxigenic fungi in plantbased supplements and medicines[J]. Curr Opin Food Sci, 2019, 30:27-31.
[25] Su C, Hu Y, Gao D, et al. Occurrence of toxigenic fungi and mycotoxins on root herbs from Chinese markets[J]. J Food Prot, 2018, 81:754-761.
[26] Li T, Jiang D, Hu X, et al. Study on the surface fungus diversity of commercially Platycladi semen based on high-throughput sequencing technology[J]. Acta Pharm Sin (药学学报), 2019, 54:2100-2105.
相关文献:
1.张婷婷, 梁勇满, 许亮, 杨燕云, 邢艳萍, 刘涛, 康廷国.基于高通量测序技术对五种白头翁药材混合样品的DNA分子鉴定研究[J]. 药学学报, 2018,53(11): 1918-1923
2.熊超, 李景剑, 孙伟, 刘合刚, 邬兰, 刘迪, 胡志刚, 陈士林.HRM结合DNA条形码在苦杏仁对桃仁掺混检测中的应用[J]. 药学学报, 2017,52(4): 647-652