药学学报, 2021, 56(9): 2372-2377
引用本文:
陈震东, 高宇雄, 薛皓, 郑元东, 王蓉, 杨美家, 钟大放. UHPLC-MS/MS法考察FGF21-164融合蛋白在小鼠体内的药代动力学[J]. 药学学报, 2021, 56(9): 2372-2377.
CHEN Zhen-dong, GAO Yu-xiong, XUE Hao, ZHENG Yuan-dong, WANG Rong, YANG Mei-jia, ZHONG Da-fang. Pharmacokinetics of FGF21-164 fusion protein in mice using UHPLC-MS/MS method[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2372-2377.

UHPLC-MS/MS法考察FGF21-164融合蛋白在小鼠体内的药代动力学
陈震东1, 高宇雄1, 薛皓1, 郑元东1, 王蓉2, 杨美家3*, 钟大放1*
1. 中国科学院上海药物研究所, 上海 201203;
2. 中国药科大学, 江苏 南京 210009;
3. 江苏艾洛特医药研究院有限公司, 江苏 南京 211103
摘要:
FGF21-164是通过对内源性FGF21多肽的结构修饰、偶联得到的融合蛋白,拟用于治疗肥胖引起的糖脂代谢紊乱。本文通过Skyline软件预测得到该蛋白经胰蛋白酶酶解后的候选肽段质谱信息,采用高分辨质谱法验证预测的候选肽段。通过优化超高效液相色谱-串联质谱(UHPLC-MS/MS)法分析条件,选择具有最佳质谱响应的FGF21-164特征替代肽段(YLYTDDAQQTEAHLEIR)。血清样品经磷酸缓冲液稀释后,60℃变性并烷基化,在37℃下与胰蛋白酶孵育2 h直接酶解产生替代肽段,该肽段在质谱ESI正离子模式检测下,产生特征离子对,即三电荷的母离子m/z 689.3和单电荷的子离子m/z 738.4。色谱分离使用含0.1%甲酸的水溶液(A相)和0.1%甲酸的乙腈溶液(B相),在EclipsePlus C18柱(2.1 mm×50 mm,1.8 μm)上进行,以多反应监测模式对上述离子对监测,以外标法定量分析小鼠血清中FGF21-164融合蛋白的浓度。该方法在2.50~500 μg·mL-1内呈良好的线性关系(r=0.998 8),定量下限为2.50 μg·mL-1。该方法成功应用于FGF21-164融合蛋白在小鼠体内的药代动力学研究。动物实验经中国科学院上海药物研究所实验动物伦理委员会(批号:20180004040450)批准。药动学实验结果表明,相比于内源性FGF21,FGF21-164融合蛋白在小鼠体内的t1/2由0.5 h延长至2.6 h,有望延长该蛋白的疗效。
关键词:    LC-MS/MS      FGF21-164融合蛋白      药代动力学     
Pharmacokinetics of FGF21-164 fusion protein in mice using UHPLC-MS/MS method
CHEN Zhen-dong1, GAO Yu-xiong1, XUE Hao1, ZHENG Yuan-dong1, WANG Rong2, YANG Mei-jia3*, ZHONG Da-fang1*
1. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
2. China Pharmaceutical University, Nanjing 210009, China;
3. Jiangsu Cell Tech Medical Research Institute, Nanjing 211103, China
Abstract:
FGF21-164 is a fusion protein obtained by structural modification and coupling of endogenous FGF21. It is a candidate drug used in the treatment of glucose and lipid metabolic disorders caused by obesity. In this study, the candidate peptide mass spectrometry information of the protein hydrolyzed by trypsin was predicted by Skyline software and verified by high resolution mass spectrometry. The specific surrogate peptide (YLYTDDAQQTEAHLEIR) with the best mass response was selected after optimizing ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Under ESI positive ion mode, the parent ion m/z 689.3 with 3 charge and the product ion m/z 738.4 with single charge can be monitored. After dilution by PBS, the serum samples were denatured under 60℃ and alkylated to reduce the matrix effect, then incubated with trypsin at 37℃ for 2 h, to obtain the surrogate peptide. The chromatographic separation was carried out on an EclipsePlus C18 column (2.1 mm×50 mm, 1.8 μm) using aqueous solution containing 0.1% formic acid (phase A) and acetonitrile solution containing 0.1% formic acid (phase B). Finally, the concentration of FGF21-164 fusion protein in mouse serum was quantitatively analyzed by external standard method by monitoring the above ion pairs using triple quadrupole mass spectrometer. This method showed a good linearity in the range of 2.50-500 μg·mL-1 (r=0.998 8), and was successfully applied to the pharmacokinetic study of FGF21-164 fusion protein in mice. This experiment was approved by the Experimental Animal Ethics Committee of Shanghai Institute of Materia Medica, Chinese Academy of Sciences (batch number:20180004040450). Compared with the endogenous FGF21, the t1/2 of FGF21-164 fusion protein was prolonged from 0.5 h to 2.6 h, which is expected to prolong the therapeutic efficacy of this protein.
Key words:    LC-MS/MS    FGF21-164 fusion protein    pharmacokinetics   
收稿日期: 2021-04-27
DOI: 10.16438/j.0513-4870.2021-0637
基金项目: 国家自然科学基金资助项目(81521005).
通讯作者: 钟大放,E-mail:dfzhong@simm.ac.cn;杨美家,E-mail:meijia.yang@boston3t.com
Email: dfzhong@simm.ac.cn;meijia.yang@boston3t.com
相关功能
PDF(488KB) Free
打印本文
0
作者相关文章
陈震东  在本刊中的所有文章
高宇雄  在本刊中的所有文章
薛皓  在本刊中的所有文章
郑元东  在本刊中的所有文章
王蓉  在本刊中的所有文章
杨美家  在本刊中的所有文章
钟大放  在本刊中的所有文章

参考文献:
[1] Hecht R, Li YS, Sun J, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes[J]. PLoS One, 2012, 7:e49345.
[2] Weng Y, Ishino T, Sievers A, et al. Glyco-engineered long acting FGF21 variant with optimal pharmaceutical and pharmacokinetic properties to enable weekly to twice monthly subcutaneous dosing[J]. Sci Rep, 2018, 8:4241.
[3] Stanislaus S, Hecht R, Yie J, et al. A novel Fc-FGF21 with improved resistance to proteolysis, increased affinity toward beta-klotho, and enhanced efficacy in mice and cynomolgus monkeys[J]. Endocrinology, 2017, 158:1314-1327.
[4] Wu AL, Kolumam G, Stawicki S, et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1[J]. Sci Transl Med, 2011, 3:113ra126.
[5] Le CT, Nguyen G, Park SY, et al. LY2405319, an analog of fibroblast growth factor 21 ameliorates α-smooth muscle actin production through inhibition of the succinate-G-protein couple receptor 91(GPR91) pathway in mice[J]. PLoS One, 2018, 13:e0192146.
[6] Weng Y, Chabot JR, Bernardo B, et al. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice[J]. PLoS One, 2015, 10:e0119104.
[7] Watanabe H, Miyahisa M, Chikamatsu M, et al. Development of a long acting FGF21 analogue-albumin fusion protein and its anti-diabetic effects[J]. J Control Release, 2020, 324:522-531.
[8] Damen CW, Schellens JH, Beijnen JH. Bioanalytical methods for the quantification of therapeutic monoclonal antibodies and their application in clinical pharmacokinetic studies[J]. Hum Antibodies, 2009, 18:47-73.
[9] Gao Y, Zhong D. Advances in bioanalysis of antibody drugs by LC-MS[J]. Acta Pharm Sin (药学学报), 2020, 55:453-462.
[10] Todoroki K, Mizuno H, Sugiyama E, et al. Bioanalytical methods for therapeutic monoclonal antibodies and antibody-drug conjugates:a review of recent advances and future perspectives[J]. J Pharm Biomed Anal, 2020, 179:112991.
[11] Zhen EY, Jin Z, Ackermann BL, et al. Circulating FGF21 proteolytic processing mediated by fibroblast activation protein[J]. Biochem J, 2016, 473:605-614.
[12] Zhao Y, Liu G, Kwok S, et al. Highly selective and sensitive measurement of active forms of FGF21 using novel immunocapture enrichment with LC-MS/MS[J]. Bioanalysis, 2017, 10:23-33.
[13] Li F, Weng Y, Zhang G, et al. Characterization and quantification of an Fc-FGF21 fusion protein in rat serum using immunoaffinity LC-MS[J]. AAPS J, 2019, 21:84.
[14] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[S]. 2020 Ed. Vol 4. Beijing:China Medical Science Press, 2020:466-468.
[15] Zhou SV, Ferrari L, Qu J. Practical considerations in enhancing LC-MS sensitivity for therapeutic protein bioanalysis[J]. Bioanalysis, 2017, 9:1353-1356.
[16] Shen JX, Liu G, Zhao Y. Strategies for improving sensitivity and selectivity for the quantitation of biotherapeutics in biological matrix using LC-MS/MS[J]. Expert Rev Proteomics, 2015, 12:125-131.
[17] Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators--a critical appraisal[J]. Cell Metab, 2012, 16:693-705.
[18] Gao Y, Zhang D, Yang C, et al. Two validated liquid chromatography-mass spectrometry methods with different pretreatments for the quantification of an anti-CD47 monoclonal antibody in rat and cynomolgus monkey serum compared with an electrochemiluminescence method[J]. J Pharm Biomed Anal, 2019, 175:112792.
[19] Gao Y, Chen Z, Yang C, et al. Liquid chromatography-mass spectrometry method for the quantification of an anti-sclerostin monoclonal antibody in cynomolgus monkey serum[J]. J Pharm Anal, 2020. https://doi.org/10.1016/j.jpha.2020.08.005.
[20] Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21[J]. Endocrinology, 2007, 148:774-781.
相关文献:
1.孙筱初, 林菲菲, 万咪咪, 佟悦, 常路, 袁梦, 冯莹莹, 滕国生, 刘佳.液相色谱-串联质谱法测定大鼠血浆中赖脯胰岛素及其药动学研究[J]. 药学学报, 2021,56(9): 2383-2388
2.杨华娇, 武丽南, 刘延平, 谷元, 魏广力, 刘万卉, 司端运.LC-MS/MS法测定家兔血浆中二氟可龙的浓度[J]. 药学学报, 2019,54(3): 522-527
3.刘珊珊, 耿雅杰, 夏媛媛, 刘静媛, 魏广力, 司端运.LC-MS/MS法定量测定人血浆中诺氟沙星浓度的分析方法研究及其应用[J]. 药学学报, 2019,54(4): 695-700
4.郭树攀, 王汝涛, 赵熠, 安龙, 肖飒, 秦燕.两种晶型异丙双酚片剂的比格犬药代动力学研究[J]. 药学学报, 2019,54(6): 1088-1091
5.王蕊, 王宝莲, 李燕.HPLC-MS/MS法研究恒河猴口服新型调血脂化合物IMM-H007后的全血药代动力学特征[J]. 药学学报, 2018,53(7): 1156-1161
6.张如月, 谷元, 张爱杰, 董世奇, 李全胜, 魏广力, 司端运.LC-MS/MS法测定大鼠血浆中奥贝胆酸的浓度[J]. 药学学报, 2018,53(2): 271-277
7.刘善桂, 戴晓健, 钟大放, 张朝凤, 陈笑艳.罗汉果醇在大鼠血浆中代谢产物鉴定及药代动力学研究[J]. 药学学报, 2017,52(9): 1452-1457
8.陈帅, 夏媛媛, 魏广力, 李全胜, 刘梦杰, 陈勇, 司端运.柱前衍生化结合UHPLC-MS/MS法同时测定Beagle犬血浆中的红景天苷和酪醇[J]. 药学学报, 2017,52(2): 296-301
9.林力, 孙明谦, 苗兰, 任常英, 林成仁, 刘建勋, 付建华.中药复方天龙通心在大鼠体内的药代动力学研究[J]. 药学学报, 2017,52(4): 575-581
10.隗慧慧, 谷元, 刘延平, 魏广力, 陈勇, 刘昌孝, 司端运.LC-MS/MS法同时测定犬全血中丁酸氯维地平及其代谢物氯维地平酸[J]. 药学学报, 2015,50(10): 1290-1296
11.王宝莲, 扈金萍, 盛 莉, 陈 晖, 李 燕.HPLC-MS/MS法定量研究比格犬灌胃替诺福韦酯后替诺福韦血浆药代动力学[J]. 药学学报, 2013,48(3): 390-394
12.李秋莎,郗恒,韩国柱,王长远,吕莉,邹玲莉,李楠.茶多酚在大鼠的多效应成分整合药代动力学及其与抗自由基药效动力学的相关性[J]. 药学学报, 2012,47(7): 863-869
13.刘荷英, 丁 黎, 于 勇, 储 妍, 朱 贺.替吉奥胶囊在晚期胃癌患者体内的药代动力学研究[J]. 药学学报, 2012,47(10): 1363-1369
14.夏 天 刘德鼎 石力夫 胡晋红.LC-MS/MS法研究氢溴酸东莨菪碱口腔速崩微囊片在比格犬体内的药代动力学[J]. 药学学报, 2011,46(8): 951-954
15.张丝韵 宋敏 卢俊钢 杭太俊.丹参与三七配伍对主要活性成分药代动力学行为的影响[J]. 药学学报, 2010,45(11): 1433-1439
16.冯亮 胡昌江 余凌英.人参皂苷Rg1及其代谢产物的药代动力学研究[J]. 药学学报, 2010,45(5): 636-640
17.陈丽华 刘丽丽 刘红宁 朱卫丰 衣文娇 赵益 .LC-MS/MS法同时测定大鼠血浆中贝母素甲、贝母素乙的浓度及其在药代动力学中的应用[J]. 药学学报, 2010,45(7): 891-894
18.曲婷婷;张蕊;王本杰;刘晓燕;袁桂艳;郭瑞臣.LC-MS/MS 法测定人血浆中倍他米松[J]. 药学学报, 2008,43(4): 402-407
19.徐晓燕;张蕊;袁桂艳;王本杰;刘晓燕;郭瑞臣.HPLC-MS/MS法测定人体色甘酸钠血浆浓度及其药代动力学研究[J]. 药学学报, 2008,43(9): 942-945
20.孔爱英;张振清;乔建忠;张帆;周文霞;刘克良;阮金秀.HPLC-MS/MS法测定血浆中十肽化合物LXT-101及Beagle犬药代动力学研究[J]. 药学学报, 2008,43(9): 946-950
21.张蕊;王本杰;赵恒利;李小利;魏春敏;郭瑞臣.HPLC-MS/MS法测定血浆中莪术醇浓度及Beagle犬体内的药代动力学研究[J]. 药学学报, 2007,42(9): 973-977