药学学报, 2021, 56(9): 2394-2402
引用本文:
王辉, 蔡颖, 刘敏, 洪战英, 柴逸峰. 基于UHPLC-QTOF/MS的细胞代谢组学对丹参和知母防治阿尔茨海默病的药效比较研究[J]. 药学学报, 2021, 56(9): 2394-2402.
WANG Hui, CAI Ying, LIU Min, HONG Zhan-ying, CHAI Yi-feng. Comparative study on the protective effect of Salvia miltiorrhiza and Anemarrhena asphodeloides on AD cell model using UHPLC-QTOF/MS based cell metabolomics[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2394-2402.

基于UHPLC-QTOF/MS的细胞代谢组学对丹参和知母防治阿尔茨海默病的药效比较研究
王辉1#, 蔡颖1,2#, 刘敏3, 洪战英1,2*, 柴逸峰1
1. 海军军医大学药学院, 上海 200433;
2. 福建中医药大学药学院, 福建 福州 350122;
3. 海军军医大学长海医院药学部, 上海 200433
摘要:
采用细胞代谢组学策略比较丹参和知母提取液对AD细胞模型的保护作用并探讨其保护机制。通过冈田酸诱导SH-SY5Y细胞建立Tau蛋白异常磷酸化的AD细胞模型,通过细胞增殖-毒性实验评价丹参和知母提取液对模型的保护作用,运用代谢组学策略探寻与AD相关的潜在生物标志物,比较研究丹参和知母对潜在生物标志物的影响。结果丹参提取液对该AD细胞模型具有一定的保护作用(P < 0.05),而知母提取液则无明显保护作用(P> 0.05);基于UHPLC-QTOF/MS的细胞代谢组学筛选出45个与AD细胞模型显著相关的差异代谢物,主要涉及12条代谢通路。给予丹参提取液后30个差异代谢物出现回调,而知母提取液干预后7个代谢物出现回调,丹参回调代谢物的范围更广且能覆盖所有知母回调的代谢产物。表明丹参和知母提取液对Tau蛋白异常磷酸化AD细胞模型均具有一定的保护作用,但是丹参干预后能显著提高细胞活力,保护作用更佳,作用机制可能与调节冈田酸诱导的AD细胞模型紊乱的代谢通路有关。
关键词:    UHPLC-QTOF/MS      细胞代谢组学      阿尔茨海默病      丹参      知母      药效比较     
Comparative study on the protective effect of Salvia miltiorrhiza and Anemarrhena asphodeloides on AD cell model using UHPLC-QTOF/MS based cell metabolomics
WANG Hui1#, CAI Ying1,2#, LIU Min3, HONG Zhan-ying1,2*, CHAI Yi-feng1
1. School of Pharmacy, Naval Medical University, Shanghai 200433, China;
2. School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
3. Department of Pharmacy, Changhai Hospital, Naval Military Medical University, Shanghai 200433, China
Abstract:
The paper aims to compare the protective effect of Salvia miltiorrhiza and Anemarrhena asphodeloides on AD cell model and investigate its protective mechanism by cell metabolomics platform. AD cell model was established by the abnormal phosphorylation of Tau protein in SH-SY5Y cells induced by okadaic acid. The protective effect of the extract of Salvia miltiorrhiza and Anemarrhena asphodeloides on the model was evaluated by cell proliferation-toxicity experiment. The metabolomics platform was used to study the efficacy of Salvia miltiorrhiza and Anemarrhena asphodeloides comprehensively, explore the potential biomarkers related to AD and the effect of drugs on the potential biomarkers. Salvia miltiorrhiza extract had a certain protective effect on the AD model (P < 0.05), while the Anemarrhena asphodeloides extract had no significant protective effect (P > 0.05). 45 significant differential metabolites and the related 12 metabolic pathways were identified using UHPLC-QTOF/MS platform, which were related to the AD cell model. After administration of Salvia miltiorrhiza extract, 30 different metabolites appeared callback, while after intervention of Anemarrhena asphodeloides extract, 7 metabolites appeared callback. The results showed that the extracts of Salvia miltiorrhiza and Anemarrhena asphodeloides had certain protective effects on the AD cell model with Tau protein abnormal phosphorylation, but Salvia miltiorrhiza had more extensive targets and could significantly improve the cell viability. The mechanism may be related to the regulation of the metabolic pathways of AD cell model induced by okadaic acid.
Key words:    UHPLC-QTOF/MS    cell metabolomics    Alzheimer's disease    Salvia miltiorrhiza    Anemarrhena asphodeloides    comparative efficacy   
收稿日期: 2021-04-28
DOI: 10.16438/j.0513-4870.2021-0646
基金项目: 国家自然科学基金资助项目(81872829,81673386).
通讯作者: 洪战英,Tel:86-21-81871269,E-mail:hongzhy001@163.com
Email: hongzhy001@163.com
相关功能
PDF(760KB) Free
打印本文
0
作者相关文章
王辉  在本刊中的所有文章
蔡颖  在本刊中的所有文章
刘敏  在本刊中的所有文章
洪战英  在本刊中的所有文章
柴逸峰  在本刊中的所有文章

参考文献:
[1] Scheltens P, Blennow K, Breteler M, et al. Alzheimer's disease[J]. Postgrad Med J, 2016, 388:505-517.
[2] Polis B, Samson AO. Role of the metabolism of branched-chain amino acids in the development of Alzheimer's disease and other metabolic disorders[J]. Neural Regener Res, 2020, 15:1460-1470.
[3] Zhao R, Liu XF, Zhang LX, et al. Current progress of research on neurodegenerative diseases of salvianolic acid B[J]. Oxid Med Cell Longev, 2019, 2019:3281260.
[4] Cai N, Chen J, Bi DC, et al. Specific degradation of endogenous Tau protein and inhibition of Tau fibrillation by Tanshinone IIA through the ubiquitin-proteasome pathway[J]. J Agric Food Chem, 2020, 68:2054-2062.
[5] Zhan ZG. Advances in biosynthesis and regulation of the active ingredient of Salvia miltiorrhiza based on multi-omics approach[J]. Acta Pharm Sin (药学学报), 2020, 55:2892-2903.
[6] Lee B, Jung K, Kim DH. Timosaponin AIII, a saponin isolated from Anemarrhena asphodeloides, ameliorates learning and memory deficits in mice[J]. Pharmacol Biochem Behav, 2009, 93:121-127.
[7] Liu YW, Zhu X, Lu Q, et al. Total saponins from Rhizoma Anemarrhenae ameliorate diabetes-associated cognitive decline in rats:involvement of amyloid-beta decrease in brain[J]. J Ethnop, 2012, 139:194-200.
[8] Wilkins JM, Trushina E. Application of metabolomics in Alzheimer's disease[J]. Front Neurol, 2017, 8:719.
[9] Huang LJ, Zhao CY, Feng XH, et al. Exploration of nonclinical pharmacodynamics evaluation system of Alzheimer's disease[J]. Acta Pharm Sin (药学学报), 2020, 55:789-805.
[10] Zhang A, Sun H, Xu H, et al. Cell metabolomics[J]. Omics, 2013, 17:495-501.
[11] Wishart DS. Metabolomics for investigating physiological and pathophysiological processes[J]. Physiol Rev, 2019, 99:1819-1875.
[12] Zhang MY, Liu Y, Liu M, et al. UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer's disease cell model induced by Aβ[J]. Metabolomics, 2019, 15:13.
[13] Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China (中华人民共和国药典)[M]. Beijing:China Medical Science Press, 2015:76, 77, 212, 213.
[14] Jia XZ, Zhang ZD, He JX, et al Research advances in polysaccharides of Anemarrhena asphodeloides Bge[J]. Inf Tradit Chin Med (中医药信息), 2020, 37:111-115.
[15] Derya MA, Duygu GA, Erdinc D, et al. Okadaic acid-induce tau hyperphosphorylation and the downregulation of Pin1 expression in primary cortical neurons[J]. J Chem Neuroanat, 2018, 92:41-47.
[16] Boban M, Babic LM, Terezija M, et al. Human neuroblastoma SH-SY5Y cells treated with okadaic acid express phosphorylated high molecular weight tau-immunoreactive protein species[J]. J Neurosci Methods, 2019, 319:60-68.
[17] Wissmann P, Geisler S, Leblhuber F, et al. Immune activation in patients with Alzheimer's disease is associated with high serum phenylalanine concentrations[J]. J Neurol Sci, 2013, 329:29-33.
[18] Ravaglia G, Forti P, Maioli F, et al. Plasma amino acid concentrations in patients with amnestic mild cognitive impairment or Alzheimer disease[J]. Am J Clin Nutr, 2004, 80:483-488.
[19] Chatterjee P, Cheong YJ, Bhatnagar A, et al. Plasma metabolites associated with biomarker evidence of neurodegeneration in cognitively normal older adults[J]. J Neurochem, 2020. DOI:10.1111/jnc.15128.
[20] Tanaka M, Toldi J, Vecsei L. Exploring the etiological links behind neurodegenerative diseases:inflammatory cytokines and bioactive kynurenines[J]. Int J Mol Sci, 2020, 21:7.
[21] Gonzalez SM, Jimenez J, Narvaez A, et al. Kynurenic acid levels are increased in the CSF of Alzheimer's disease patients[J]. Biomolecules, 2020, 10:571.
[22] Li WT, Zhao MM, Tao YY, et al. Research on mechanism of active ingredients of Danshen in the treatment of Alzheimer's disease based on network pharmacology[J]. Eval Anal Drug Use Hosp Chin (中国医院用药评价与分析), 2020, 20:1409-1416.
[23] Socha E, Koba M, Piotr K. Amino acid profiling as a method of discovering biomarkers for diagnosis of neurodegenerative diseases[J]. Amino Acids, 2019, 51:367-371.
[24] Zhao X, He YR, Li M, et al. Analysis of amino acid and monoamine neurotransmitters and their metabolites in rat urine of Alzheimer's disease using in situ ultrasound-assisted derivatization dispersive liquid-liquid microextraction with UHPLC-MS/MS[J]. J Pharm Biomed Anal, 2017, 135:186-198.
[25] Widner B, Leblhuber F, Walli J, et al. Tryptophan degradation and immune activation in Alzheimer's disease[J]. J Neural Transm, 2000, 107:343-353.
[26] Adams CD. Circulating glutamine and Alzheimer's disease:a Mendelian randomization study[J]. Clin Interv Aging, 2020, 15:185-193.
[27] Bubber P, Haroutunian V, Fisch G, et al. Mitochondrial abnormalities in Alzheimer brain:mechanistic implications[J]. Ann Neurol, 2005, 57:695-703.
[28] Zádori D, Veres G, Szalárdy L, et al. Alzheimer's disease:recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and kynurenines[J]. J Alzheimer's Dis, 2018, 62:523-547.
[29] Vlassenko AG, Gordon BA, Goyal MS, et al. Aerobic glycolysis and tau deposition in preclinical Alzheimer's disease[J]. Neurobiol Aging, 2018, 67:95-98.
[30] Mosconi L, Mistur R, Switalski R, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2009, 36:811-822.