药学学报, 2021, 56(9): 2419-2425
引用本文:
郗玲玲, 简敬一, 査丁胜, 赵祥龙, 汪锦才, 李娟, 江正瑾, 张婷婷. 基于近线高分辨活性轮廓分析的湖北海棠中α-葡萄糖苷酶抑制剂筛选研究[J]. 药学学报, 2021, 56(9): 2419-2425.
XI Ling-ling, JIAN Jing-yi, ZHA Ding-sheng, ZHAO Xiang-long, WANG Jin-cai, LI Juan, JIANG Zheng-jin, ZHANG Ting-ting. Establishment of high-resolution bioassay profiling platform to screen α-glucosidase inhibitors from Malus hupehensis[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2419-2425.

基于近线高分辨活性轮廓分析的湖北海棠中α-葡萄糖苷酶抑制剂筛选研究
郗玲玲1, 简敬一1, 査丁胜2, 赵祥龙1,3, 汪锦才1, 李娟4, 江正瑾1*, 张婷婷1*
1. 暨南大学药学院, 药物分析研究中心, 广东 广州 510632;
2. 暨南大学华侨医院, 广东 广州 510630;
3. 上海爱博才思分析仪器贸易有限公司, 广东 广州 510623;
4. 湖北中医药大学药学院, 湖北 武汉 430065
摘要:
α-葡萄糖苷酶是治疗糖尿病的重要靶点。本研究基于近线高分辨活性轮廓分析技术,通过复杂化合物体系色谱分离和活性评价的同步进行,建立了适用于天然产物的快速高效α-葡萄糖苷酶抑制剂筛选平台;将其应用于湖北海棠提取物乙酸乙酯部位中活性成分的筛选和评估,获得6种α-葡萄糖苷酶抑制剂,其中5种结构鉴定为3-OH根皮苷、槲皮素-3-O-β-D-吡喃葡萄糖苷、根皮苷、萹蓄苷和槲皮苷。该平台的建立与成功应用为复杂体系中抗糖尿病活性成分的高效发现提供了有力工具。
关键词:    近线高分辨活性轮廓分析      湖北海棠      2型糖尿病      α-葡萄糖苷酶抑制剂      活性筛选     
Establishment of high-resolution bioassay profiling platform to screen α-glucosidase inhibitors from Malus hupehensis
XI Ling-ling1, JIAN Jing-yi1, ZHA Ding-sheng2, ZHAO Xiang-long1,3, WANG Jin-cai1, LI Juan4, JIANG Zheng-jin1*, ZHANG Ting-ting1*
1. Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China;
2. The First Affiliated Hospital of Jinan University, Guangzhou 510630, China;
3. SCIEX(China) Co., Ltd., Guangzhou 510623, China;
4. College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
Abstract:
α-Glucosidase inhibitors play an important role in the treatment of diabetes. This study established a high-resolution bioassay profiling platform for rapidly screening α-glucosidase inhibitors in natural product extracts. Five α-glucosidase inhibitors were identified from Malus hupehensis, namely, 3-hydroxyphloridzin, quercetin-3-O-β-D-glucopyranoside, phloridzin, avicularin and quercitrin. The establishment and successful application of this platform provides a powerful tool for the efficient discovery of anti-diabetic active ingredients in complex systems.
Key words:    high-resolution bioassay profiling platform    Malus hupehensis    type 2 diabetes    α-glucosidase inhibitor    active screening   
收稿日期: 2021-06-18
DOI: 10.16438/j.0513-4870.2021-0886
基金项目: 国家自然科学基金面上项目(81872830,82073806);广东省自然科学基金(2020A1515010641).
通讯作者: 江正瑾,E-mail:jzjjackson@hotmail.com;张婷婷,E-mail:sunrat_115@163.com
Email: jzjjackson@hotmail.com;sunrat_115@163.com
相关功能
PDF(586KB) Free
打印本文
0
作者相关文章
郗玲玲  在本刊中的所有文章
简敬一  在本刊中的所有文章
査丁胜  在本刊中的所有文章
赵祥龙  在本刊中的所有文章
汪锦才  在本刊中的所有文章
李娟  在本刊中的所有文章
江正瑾  在本刊中的所有文章
张婷婷  在本刊中的所有文章

参考文献:
[1] Pamungkas RA, Chamroonsawasdi K, Vatanasomboon P. A systematic review:family support integrated with diabetes self-management among uncontrolled type II diabetes mellitus patients[J]. Behav Sci, 2017, 7:62-78.
[2] van de Laar FA, Lucassen PL, Akkermans RP, et al. α-Glucosidase inhibitors for patients with type 2 diabetes:results from a Cochrane systematic review and meta-analysis[J]. Diabetes Care, 2005, 28:154-163.
[3] Derosa G, Maffioli P. α-Glucosidase inhibitors and their use in clinical practice[J]. Arch Med Sci, 2012, 8:899-906.
[4] Li Y, Li KY. Advances of chemical constituents and pharmacological activities of Malus hupehensis[J]. Chin J Exp Tradit Med Form (中国实验方剂学杂志), 2016, 22:226-229.
[5] Chen LL, Wu RJ, Liu LF, et al. Advances and application prospect of Malus hupehensis (Pamp.) Rehd[J]. North Hortic (北方园艺), 2013, 16:217-227.
[6] Chen YL, Tan ZX, Peng Y. Application history and research status of Malus hupehensis leaves in Hubei province[J]. Mod Chin Med (中国现代中药), 2017, 19:1505-1510.
[7] Wang CL, Wang P, Zhang ZW. Effect of Malus hupehensis on blood glucose in mice[J]. Res Pract Chin Med (现代中药研究与实践), 1999, 13:19-20.
[8] Wang Y. Effect of Malus hupehensis leaves decoction on blood glucose in hyperglycemia mice[J]. Technol Wind (科技风), 2009, 11:244-245.
[9] Jian JY, Chen HH, Hong QS, et al. Advances in chromatography-based methods for screening active compounds from natural products[J]. Acta Pharm Sin (药学学报), 2020, 55:1504-1510.
[10] Mladic M, Zietek BM, Iyer JK, et al. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms[J]. Toxicon, 2016, 110:79-89.
[11] Liu R, Kool J, Jian J, et al. Rapid screening α-glucosidase inhibitors from natural products by at-line nanofractionation with parallel mass spectrometry and bioactivity assessment[J]. J Chromatogr A, 2021, 1635:461740.
[12] Nguyen PH, Dung VV, Zhao BT, et al. Antithrombotic and antidiabetic flavonoid glycosides from the grains of Sorghum bicolor (L.) Moench var. hwanggeumchal[J]. Arch Pharm Res, 2014, 37:1394-1402.
[13] Lv Q, Lin Y, Tan Z, et al. Dihydrochalcone-derived polyphenols from tea crab apple (Malus hupehensis) and their inhibitory effects on alpha-glucosidase in vitro[J]. Food Funct, 2019, 10:2881-2887.
[14] Liu M, Huang X, Liu Q, et al. Rapid screening and identification of antioxidants in the leaves of Malus hupehensis using off-line two-dimensional HPLC-UV-MS/MS coupled with a 1,1'-diphenyl-2-picrylhydrazyl assay[J]. J Sep Sci, 2018, 41:2536-2543.
[15] Guo D, Dang J, Yang H, et al. Simultaneous determination of four flavonoids in rat plasma after oral administration of Malus hupehensis (Pamp.) Rehd. extracts by UPLC-MS/MS and its application to a pharmacokinetics study[J]. J Pharm Biomed Anal, 2020, 177:112869.
[16] Shen B, Zhou R, Yang Y, et al. Antimicrobial activity-guided identification of compounds from the deciduous leaves of Malus doumeri by HPLC-ESI-QTOF-MS/MS[J]. Nat Prod Res, 2019, 33:2515-2520.
[17] Wang Y, Gu YT, Ding ZH, et al. Identification and analysis of quercetin and its glycosides from Rosa roxburghii by ultra high performance liquid chromatography-tandem high resolution mass spectrometry[J]. Chin J Anal Chem (分析化学), 2020, 48:955-961.
[18] Xu H. Inhibition kinetics of flavonoids on yeast α-glucosidase merged with docking simulations[J]. Protein Pept Lett, 2010, 17:1270-1279.