药学学报, 2021, 56(9): 2456-2463
刘羿晨, 杜婷婷, 王庆华, 张智慧, 陈晓光*. 脂质代谢与血液肿瘤[J]. 药学学报, 2021, 56(9): 2456-2463.
LIU Yi-chen, DU Ting-ting, WANG Qing-hua, ZHANG Zhi-hui, CHEN Xiao-guang*. Lipid metabolism and hematological malignancies[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2456-2463.

刘羿晨, 杜婷婷, 王庆华, 张智慧, 陈晓光*
中国医学科学院、北京协和医学院药物研究所, 天然药物活性物质与功能国家重点实验室, 北京 100050
关键词:    脂质代谢      脂肪酸氧化      代谢酶      血液肿瘤     
Lipid metabolism and hematological malignancies
LIU Yi-chen, DU Ting-ting, WANG Qing-hua, ZHANG Zhi-hui, CHEN Xiao-guang*
State Key Laboratory of Bioactive Substance and Function of National Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
With the deepening of research in recent years, tumor metabolic reprogramming has gradually become the focus of research, and targeting tumor cell metabolism has also become a new means of tumor therapy. The metabolic process affects almost all the physiological processes of the organism, and lipid metabolism is an important part of the metabolic process. Studies have shown that changes in lipid uptake, storage and fatty acid synthesis and decomposition have occurred in a variety of tumors. Abnormal lipid metabolism will promote the rapid proliferation of tumors. Abnormal expression of a variety of key metabolic enzymes in the process of lipid metabolism is the key to tumor progression. The purpose of this paper is to explain the metabolic regulation of lipid metabolism and related metabolic enzymes in hematological tumors, and to provide ideas for the treatment of hematological tumors.
Key words:    lipid metabolism    fatty acid oxidation    metabolic enzyme    hematological malignancy   
收稿日期: 2021-01-06
DOI: 10.16438/j.0513-4870.2021-0030
基金项目: “十三五”国家“重大新药创制”科技重大专项(2018ZX09711001-003-011).
通讯作者: 陈晓光,Tel:86-10-63165207,E-mail:chxg@imm.ac.cn
Email: chxg@imm.ac.cn
PDF(537KB) Free
刘羿晨  在本刊中的所有文章
杜婷婷  在本刊中的所有文章
王庆华  在本刊中的所有文章
张智慧  在本刊中的所有文章
陈晓光*  在本刊中的所有文章

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68:394-424.
[2] Zheng RS, Sun KX, Zhang SW, et al. Report of cancer epidemiology in China[J]. Chin J Oncol (中华肿瘤杂志), 2019, 41:19-28.
[3] Chen KTJ, Gilabert-Oriol R, Bally MB, et al. Recent treatment advances and the role of nanotechnology, combination products, and immunotherapy in changing the therapeutic landscape of acute myeloid leukemia[J]. Pharm Res, 2019, 36:125.
[4] Sharma S, Rai KR. Chronic lymphocytic leukemia (CLL) treatment:so many choices, such great options[J]. Cancer, 2019, 125:1432-1440.
[5] Topp MS, Zimmerman Z, Cannell P, et al. Health-related quality of life in adults with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab[J]. Blood, 2018, 131:2906-2914.
[6] Turtle CJ, Hay KA, Hanafi LA, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib[J]. J Clin Oncol, 2017, 35:3010-3020.
[7] Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144:646-674.
[8] Warburg O. On respiratory impairment in cancer cells[J]. Science, 1956, 124:269-270.
[9] Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy[J]. Cell Chem Biol, 2017, 24:1161-1180.
[10] Merino Salvador M, Gómez de Cedrón M, Moreno Rubio J, et al. Lipid metabolism and lung cancer[J]. Crit Rev Oncol Hematol, 2017, 112:31-40.
[11] Wright HJ, Hou J, Xu B, et al. CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation[J]. Proc Natl Acad Sci U S A, 2017, 114:E6556-E6565.
[12] Holthuis JC, Menon AK. Lipid landscapes and pipelines in membrane homeostasis[J]. Nature, 2014, 510:48-57.
[13] Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis[J]. Nat Rev Cancer, 2007, 7:763-777.
[14] Heintel D, Kienle D, Shehata M, et al. High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukemia[J]. Leukemia, 2005, 19:1216-1223.
[15] Ye H, Adane B, Khan N, et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche[J]. Cell Stem Cell, 2016, 19:23-37.
[16] Perea G, Domingo A, Villamor N, et al. Adverse prognostic impact of CD36 and CD2 expression in adult de novo acute myeloid leukemia patients[J]. Leuk Res, 2005, 29:1109-1116.
[17] Stuani L, Riols F, Millard P, et al. Stable isotope labeling highlights enhanced fatty acid and lipid metabolism in human acute myeloid leukemia[J]. Int J Mol Sci, 2018, 19:3325.
[18] Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer[J]. Nat Rev Cancer, 2016, 16:732-749.
[19] Geng F, Cheng X, Wu X, et al. Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis[J]. Clin Cancer Res, 2016, 22:5337-5348.
[20] Currie E, Schulze A, Zechner R, et al. Cellular fatty acid metabolism and cancer[J]. Cell Metab, 2013, 18:153-161.
[21] Zhao S, Torres A, Henry RA, et al. ATP-citrate lyase controls a glucose-to-acetate metabolic switch[J]. Cell Rep, 2016, 17:1037-1052.
[22] Wang C, Rajput S, Watabe K, et al. Acetyl-CoA carboxylase-a as a novel target for cancer therapy[J]. Front Biosci (Schol Ed), 2010, 2:515-526.
[23] Khwairakpam AD, Shyamananda MS, Sailo BL, et al. ATP citrate lyase (ACLY):a promising target for cancer prevention and treatment[J]. Curr Drug Targets, 2015, 16:156-163.
[24] Osugi J, Yamaura T, Muto S, et al. Prognostic impact of the combination of glucose transporter 1 and ATP citrate lyase in node-negative patients with non-small lung cancer[J]. Lung Cancer, 2015, 88:310-318.
[25] Basappa J, Citir M, Zhang Q, et al. ACLY is the novel signaling target of PIP2/PIP3 and Lyn in acute myeloid leukemia[J]. Heliyon, 2020, 6:e03910.
[26] Wang J, Ye W, Yan X, et al. Low expression of ACLY associates with favorable prognosis in acute myeloid leukemia[J]. J Transl Med, 2019, 17:149.
[27] Granchi C. ATP citrate lyase (ACLY) inhibitors:an anti-cancer strategy at the crossroads of glucose and lipid metabolism[J]. Eur J Med Chem, 2018, 157:1276-1291.
[28] Koerner SK, Hanai JI, Bai S, et al. Design and synthesis of emodin derivatives as novel inhibitors of ATP-citrate lyase[J]. Eur J Med Chem, 2017, 126:920-928.
[29] Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer[J]. Expert Opin Ther Targets, 2017, 21:1001-1016.
[30] Pandey PR, Liu W, Xing F, et al. Anti-cancer drugs targeting fatty acid synthase (FAS)[J]. Recent Pat Anticancer Drug Discov, 2012, 7:185-197.
[31] Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia[J]. J Clin Oncol, 2017, 35:975-983.
[32] Ghaeidamini Harouni M, Rahgozar S, Rahimi Babasheikhali S, et al. Fatty acid synthase, a novel poor prognostic factor for acute lymphoblastic leukemia which can be targeted by ginger extract[J]. Sci Rep, 2020, 10:14072.
[33] Bhatt AP, Jacobs SR, Freemerman AJ, et al. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma[J]. Proc Natl Acad Sci U S A, 2012, 109:11818-11823.
[34] Gelebart P, Zak Z, Anand M, et al. Blockade of fatty acid synthase triggers significant apoptosis in mantle cell lymphoma[J]. PLoS One, 2012, 7:e33738.
[35] Kapadia B, Nanaji NM, Bhalla K, et al. Fatty acid synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL[J]. Nat Commun, 2018, 9:829.
[36] Danilova OV, Dumont LJ, Levy NB, et al. FASN and CD36 predict survival in rituximab-treated diffuse large B-cell lymphoma[J]. J Hematop, 2013, 6:11-18.
[37] Kant S, Kumar A, Singh SM. Fatty acid synthase inhibitor orlistat induces apoptosis in T cell lymphoma:role of cell survival regulatory molecules[J]. Biochim Biophys Acta, 2012, 1820:1764-1773.
[38] Kyle RA, Rajkumar SV. Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma[J]. Leukemia, 2009, 23:3-9.
[39] Bolzoni M, Chiu M, Accardi F, et al. Dependence on glutamine uptake and glutamine addiction characterize myeloma cells:a new attractive target[J]. Blood, 2016, 128:667-679.
[40] Nakano A, Miki H, Nakamura S, et al. Up-regulation of hexokinaseII in myeloma cells:targeting myeloma cells with 3-bromopyruvate[J]. J Bioenerg Biomembr, 2012, 44:31-38.
[41] Tirado-Velez JM, Joumady I, Saez-Benito A, et al. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation[J]. PLoS One, 2012, 7:e46484.
[42] Wang WQ, Zhao XY, Wang HY, et al. Increased fatty acid synthase as a potential therapeutic target in multiple myeloma[J]. J Zhejiang Univ Sci B, 2008, 9:441-447.
[43] Bai Y, McCoy JG, Levin EJ, et al. X-ray structure of a mammalian stearoyl-CoA desaturase[J]. Nature, 2015, 524:252-256.
[44] Wu X, Zou X, Chang Q, et al. The evolutionary pattern and the regulation of stearoyl-CoA desaturase genes[J]. Biomed Res Int, 2013, 2013:856521.
[45] Khanim FL, Hayden RE, Birtwistle J, et al. Combined bezafibrate and medroxyprogesterone acetate:potential novel therapy for acute myeloid leukaemia[J]. PLoS One, 2009, 4:e8147.
[46] Yamazaki T, Okada H, Sakamoto T, et al. Differential induction of stearoyl-CoA desaturase 1 and 2 genes by fibrates in the liver of rats[J]. Biol Pharm Bull, 2012, 35:116-120.
[47] Southam AD, Khanim FL, Hayden RE, et al. Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids[J]. Cancer Res, 2015, 75:2530-2540.
[48] Zhang H, Li H, Ho N, et al. SCD1 plays a tumor-suppressive role in survival of leukemia stem cells and the development of chronic myeloid leukemia[J]. Mol Cell Biol, 2012, 32:1776-1787.
[49] von Roemeling CA, Marlow LA, Wei JJ, et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma[J]. Clin Cancer Res, 2013, 19:2368-2380.
[50] Pisanu ME, Noto A, De Vitis C, et al. Blockade of stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells[J]. Cancer Lett, 2017, 406:93-104.
[51] Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism:fatty acid oxidation in the limelight[J]. Nat Rev Cancer, 2013, 13:227-232.
[52] Hossain F, Al-Khami AA, Wyczechowska D, et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies[J]. Cancer Immunol Res, 2015, 3:1236-1247.
[53] Schlaepfer IR, Joshi M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential[J]. Endocrinology, 2020, 161:bqz046.
[54] Corbet C, Feron O. Emerging roles of lipid metabolism in cancer progression[J]. Curr Opin Clin Nutr Metab Care, 2017, 20:254-260.
[55] Ceccarelli SM, Chomienne O, Gubler M, et al. Carnitine palmitoyltransferase (CPT) modulators:a medicinal chemistry perspective on 35 years of research[J]. J Med Chem, 2011, 54:3109-3152.
[56] Price N, van der Leij F, Jackson V, et al. A novel brain-expressed protein related to carnitine palmitoyltransferase I[J]. Genomics, 2002, 80:433-442.
[57] Zhang MY, Du TT, Ji M, et al. Research progress of carnitine palmitoyltransferase 1 in tumor immunotherapy[J]. Acta Pharm Sin (药学学报), 2019, 54:1824-1830.
[58] Gatza ML, Silva GO, Parker JS, et al. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer[J]. Nat Genet, 2014, 46:1051-1059.
[59] Valentino A, Calarco A, Di Salle A, et al. Deregulation of microRNAs mediated control of carnitine cycle in prostate cancer:molecular basis and pathophysiological consequences[J]. Oncogene, 2017, 36:6030-6040.
[60] Ricciardi MR, Mirabilii S, Allegretti M, et al. Targeting the leukemia cell metabolism by the CPT1a inhibition:functional preclinical effects in leukemias[J]. Blood, 2015, 126:1925-1929.
[61] Gugiatti E, Tenca C, Ravera S, et al. A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells[J]. Haematologica, 2018, 103:e531-e536.
[62] Shi J, Fu H, Jia Z, et al. High expression of CPT1A predicts adverse outcomes:a potential therapeutic target for acute myeloid leukemia[J]. EBioMedicine, 2016, 14:55-64.
[63] Liu PP, Liu J, Jiang WQ, et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline[J]. Oncogene, 2016, 35:5663-5673.
[64] Yamamoto K, Abe S, Honda A, et al. Fatty acid beta oxidation enzyme HADHA is a novel potential therapeutic target in malignant lymphoma[J]. Lab Invest, 2020, 100:353-362.
[65] Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism:implications for metabolic disease[J]. Physiol Rev, 2010, 90:367-417.
[66] Yoshida Y, Jain SS, McFarlan JT, et al. Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis[J]. J Physiol, 2013, 591:4415-4426.
[67] Zhang T, Yang J, Vaikari VP, et al. Apolipoprotein C2-CD36 promotes leukemia growth and presents a targetable axis in acute myeloid leukemia[J]. Blood Cancer Discov, 2020, 1:198-213.
[68] Farge T, Saland E, de Toni F, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism[J]. Cancer Discov, 2017, 7:716-735.
[69] Rozovski U, Harris DM, Li P, et al. STAT3-activated CD36 facilitates fatty acid uptake in chronic lymphocytic leukemia cells[J]. Oncotarget, 2018, 9:21268-21280.
[70] Ladanyi A, Mukherjee A, Kenny HA, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis[J]. Oncogene, 2018, 37:2285-2301.
[71] Pascual G, Avgustinova A, Mejetta S, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36[J]. Nature, 2017, 541:41-45.
[72] Gorres KL, Raines RT. Prolyl 4-hydroxylase[J]. Crit Rev Biochem Mol Biol, 2010, 45:106-124.
[73] German NJ, Yoon H, Yusuf RZ, et al. PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2[J]. Mol Cell, 2016, 63:1006-1020.
[74] Rawluszko A A, Bujnicka KE, Horbacka K, et al. Expression and DNA methylation levels of prolyl hydroxylases PHD1, PHD2, PHD3 and asparaginyl hydroxylase FIH in colorectal cancer[J]. BMC Cancer, 2013, 13:526.
1.胡冰芳 毕惠嫦 黄民.孕烷X受体及组成性雄甾烷受体的研究新进展[J]. 药学学报, 2011,46(10): 1173-1177