药学学报, 2021, 56(9): 2464-2471
引用本文:
陈佳俊, 秦雪梅, 杜冠华, 周玉枝. 基于嘌呤能系统及嘌呤代谢的抑郁症发病机制研究进展[J]. 药学学报, 2021, 56(9): 2464-2471.
CHEN Jia-jun, QIN Xue-mei, DU Guan-hua, ZHOU Yu-zhi. Advances in the pathogenesis of depression based on purinergic system and purine metabolism[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2464-2471.

基于嘌呤能系统及嘌呤代谢的抑郁症发病机制研究进展
陈佳俊1,2,3, 秦雪梅1,2,3, 杜冠华1,4, 周玉枝1,2,3*
1. 山西大学中医药现代研究中心, 山西 太原 030006;
2. 山西大学化学生物学与分子工程教育部重点实验室, 山西 太原 030006;
3. 地产中药功效物质研究与利用山西省重点实验室, 山西 太原 030006;
4. 中国医学科学院、北京协和医学院药物研究所, 北京 100050
摘要:
抑郁症是一种发病机制复杂且难以调控的疾病,与嘌呤能系统和嘌呤代谢紊乱有紧密联系。虽已有研究通过调控嘌呤能系统改善抑郁症,但作用机制复杂,亟待整理。大量研究发现,增补外源性嘌呤代谢产物腺苷、肌苷和鸟苷有显著的抗抑郁作用,说明调控嘌呤代谢中嘌呤类物质水平也能改善抑郁症,这对抑郁症发病机制及治疗对策的深入研究具有重要意义。鉴于此,本研究对嘌呤能系统和嘌呤代谢与抑郁症关系的研究现状进行了整理综述,以期为嘌呤类物质对抑郁症发病机制的深入研究提供参考。
关键词:    嘌呤能      嘌呤代谢      抑郁症      发病机制      腺苷      肌苷      鸟苷     
Advances in the pathogenesis of depression based on purinergic system and purine metabolism
CHEN Jia-jun1,2,3, QIN Xue-mei1,2,3, DU Guan-hua1,4, ZHOU Yu-zhi1,2,3*
1. Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China;
2. The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China;
3. The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan 030006, China;
4. Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
Abstract:
Depression was a complex and difficult to regulate disease, which was closely related to purinergic system and purine metabolism disorder. Although there had been studies to improve depression by regulating purinergic system, the mechanism of action was complex and needed to be sorted out. Recently, a large number of studies had found that the addition of exogenous purine metabolites adenosine, inosine and guanosine had a significant antidepressant effect, indicating that regulating the level of purine substances in purine metabolism could also improve depression, which was of great significance to the further study of the pathogenesis and treatment of depression. In view of this, this study reviewed the relationship between purinergic system or purine metabolism and depression, in order to provide a reference for the further study of the pathogenesis of depression.
Key words:    purinergic    purine metabolism    depression    mechanism    adenosine    inosine    guanosine   
收稿日期: 2021-03-17
DOI: 10.16438/j.0513-4870.2021-0379
基金项目: 国家自然科学基金资助项目(82074323,81673572);国家“重大新药创制”科技重大专项(2017ZX09301047);山西省留学回国人员科技活动择优资助项目(201991);山西省回国留学人员科研资助项目(2020019).
通讯作者: 周玉枝,Tel:86-351-7019178,E-mail:zhouyuzhi@sxu.edu.cn
Email: zhouyuzhi@sxu.edu.cn
相关功能
PDF(502KB) Free
打印本文
0
作者相关文章
陈佳俊  在本刊中的所有文章
秦雪梅  在本刊中的所有文章
杜冠华  在本刊中的所有文章
周玉枝  在本刊中的所有文章

参考文献:
[1] Aricioglu F, Yalcinkaya C, Ozkartal CS, et al. NLRP1-mediated antidepressant effect of ketamine in chronic unpredictable mild stress model in rats[J]. Psychiat Invest, 2020, 17:283-291.
[2] Li M, Fu X, Xie W, et al. Effect of early life stress on the epigenetic profiles in depression[J]. Front Cell Dev Biol, 2020, 8:867.
[3] Zhou X, Liu L, Lan X, et al. Polyunsaturated fatty acids metabolism, purine metabolism and inosine as potential independent diagnostic biomarkers for major depressive disorder in children and adolescents[J]. Mol Psychiatry, 2019, 24:1478-1488.
[4] He Y, Wang Y, Wu Z, et al. Metabolomic abnormalities of purine and lipids implicated olfactory bulb dysfunction of CUMS depressive rats[J]. Metab Brain Dis, 2020, 35:649-659.
[5] Ali-sisto T, Tolmunen T, Toffol E, et al. Purine metabolism is dysregulated in patients with major depressive disorder[J]. Psychoneuroendocrinology, 2016, 70:25-32.
[6] Cheffer A, Castillo A, Correa-Velloso J, et al. Purinergic system in psychiatric diseases[J]. Mol Psychiatry, 2018, 23:94-106.
[7] Ribeiro DE, Roncalho AL, Glaser T, et al. P2X7 receptor signaling in stress and depression[J]. Int J Mol Sci, 2019, 20:2778.
[8] Wang P, Jia J, Zhang D. Purinergic signalling in liver diseases:Pathological functions and therapeutic opportunities[J]. JHEP Rep, 2020, 2:100165.
[9] Ballesteros-Yanez I, Castillo CA, Merighi S, et al. The role of adenosine receptors in psychostimulant addiction[J]. Front Pharmacol, 2017, 8:985.
[10] Park DI, Dournes C, Sillaber I, et al. Purine and pyrimidine metabolism:convergent evidence on chronic antidepressant treatment response in mice and humans[J]. Sci Rep, 2016, 6:35317.
[11] Michel TM, Camara S, Tatschner T, et al. Increased xanthine oxidase in the thalamus and putamen in depression[J]. World J Biol Psychiatry, 2010, 11:314-320.
[12] Wu Y, Li Y, Jia Y, et al. Imbalance in amino acid and purine metabolisms at the hypothalamus in inflammation-associated depression by GC-MS[J]. Mol Biosyst, 2017, 13:2715-2728.
[13] Meng X, Huang X, Deng W, et al. Serum uric acid a depression biomarker[J]. PLoS One, 2020, 15:e0229626.
[14] Zhu YL, Li SL, Zhu CY, et al. Metabolomics analysis of the antidepressant prescription Danzhi xiaoyao powder in a rat model of chronic unpredictable mild stress (CUMS)[J]. J Ethnopharmacol, 2020, 260:112832.
[15] Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart[J]. J Physiol, 1929, 68:213-237.
[16] Burnstock G. Purinergic nerves[J]. Pharmacol Rev, 1972, 24:509-581.
[17] Liu YJ, Chen J, Li X, et al. Research progress on adenosine in central nervous system diseases[J]. CNS Neurosci Ther, 2019, 25:899-910.
[18] Krugel U. Purinergic receptors in psychiatric disorders[J]. Neuropharmacology, 2016, 104:212-225.
[19] Burnstock G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration[J]. Neuropharmacology, 2016, 104:4-17.
[20] Burnstock G. Purinergic signalling:therapeutic developments[J]. Front Pharmacol, 2017, 8:661.
[21] Bartoli F, Burnstock G, Crocamo C, et al. Purinergic signaling and related biomarkers in depression[J]. Brain Sci, 2020, 10:160.
[22] Lofgren L, Pehrsson S, Hagglund G, et al. Accurate measurement of endogenous adenosine in human blood[J]. PLoS One, 2018, 13:e0205707.
[23] Sun ML. Characterization of mRNA Splicing Related SNU 66 and Purine Nucleotide Metabolism Pathway Genes in Fusarium graminearum (禾谷镰刀菌mRNA剪接基因SNU66和嘌呤核苷酸代谢途径基因的功能研究)[D]. Yangling:University of Northwest A&F, 2019.
[24] Wang YC, Chen T, Shi T, et al. Progress in biosynthesis of purine nucleosides and their derivatives by metabolic engineering[J]. Chin Biotechnol J (中国生物工程杂志), 2015, 35:87-95.
[25] Leem YH, Jang JH, Park JS, et al. Exercise exerts an anxiolytic effect against repeated restraint stress through 5-HT2A-mediated suppression of the adenosine A2A receptor in the basolateral amygdala[J]. Psychoneuroendocrinology, 2019, 108:182-189.
[26] Rombo DM, Dias RB, Duarte ST, et al. Adenosine A1 receptor suppresses tonic GABAA receptor currents in hippocampal pyramidal cells and in a defined subpopulation of interneurons[J]. Cereb Cortex, 2016, 26:1081-1095.
[27] Manzoni OJ, Manabe T, Nicoll RA. Release of adenosine by activation of NMDA receptors in the hippocampus[J]. Science, 1994, 265:2098-2101.
[28] Fan KQ, Li YY, Wang HL, et al. Stress-induced metabolic disorder in peripheral CD4+ T cells leads to anxiety-like behavior[J]. Cell, 2019, 179:864-879.
[29] Iwata M, Ota KT, Li XY, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor[J]. Biol Psychiatry, 2016, 80:12-22.
[30] van Calker D, Biber K, Domschke K, et al. The role of adenosine receptors in mood and anxiety disorders[J]. J Neurochem, 2019, 151:11-27.
[31] Duman RS, Sanacora G, Krystal JH. Altered connectivity in depression:GABA and glutamate neurotransmitter deficits and reversal by novel treatments[J]. Neuron, 2019, 102:75-90.
[32] Ulrich D, Huguenard JR. Purinergic inhibition of GABA and glutamate release in the thalamus:implications for thalamic network activity[J]. Neuron, 1995, 15:909-918.
[33] Shen KZ, Johnson SW. Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones[J]. J Physiol, 1997, 505:153-163.
[34] Menzikov SA, Zaichenko DM, Moskovtsev AA, et al. Ectopic GABAA receptor beta 3 subunit determines Cl-/HCO3--ATPase and chloride transport in HEK 293FT cells[J]. FEBS J, 2021, 288:699-712.
[35] Bukanova JV, Solntseva EI, Kudova E. Neurosteroids as selective inhibitors of glycine receptor activity:structure-activity relationship study on endogenous androstanes and androstenes[J]. Front Mol Neurosci, 2020, 13:44.
[36] Wang HQ, Wang ZZ, Chen NH. Advance in relationship between receptor gene abnormality and depression[J]. Acta Pharm Sin (药学学报), 2020, 55:384-391.
[37] Xie G. Study on the Antidepressant Effects and Mechanisms of Tea Purine Alkaloids (茶叶嘌呤生物碱抗抑郁作用及其机制的研究)[D]. Guangzhou:University of Jinan, 2010.
[38] Cao X, Li LP, Wang Q, et al. Astrocyte-derived ATP modulates depressive-like behaviors[J]. Nat Med, 2013, 19:773-777.
[39] Burnstock G, Boeynaems JM. Purinergic signalling and immune cells[J]. Purinergic Signal, 2014, 10:529-564.
[40] Su W, Zhang T, Jiang C, et al. Clemastine alleviates depressive-like behavior through reversing the imbalance of microglia-related pro-inflammatory state in mouse hippocampus[J]. Front Cell Neurosci, 2018, 12:412.
[41] Li K, Yan L, Zhang Y, et al. Seahorse treatment improves depression-like behavior in mice exposed to CUMS through reducing inflammation/oxidants and restoring neurotransmitter and neurotrophin function[J]. J Ethnopharmacol, 2020, 250:112487.
[42] Wang MY, Tao JH, Li XP. Association of purine receptor P2X ligand-gated ion channel 7 and associated inflammatory factors with depressive disorder in systemic lupus erythematosus[J]. Chin Rheumatol J (中华风湿病学杂志), 2011, 15:52-55.
[43] Boucher AA, Arnold JC, Hunt GE, et al. Resilience and reduced C-FOS expression in P2X7 receptor knockout mice exposed to repeated forced swim test[J]. Neuroscience, 2011, 189:170-177.
[44] Csoelle C, Baranyi M, Zsilla G, et al. Neurochemical changes in the mouse hippocampus underlying the antidepressant effect of genetic deletion of P2X7 receptors[J]. PLoS One, 2013, 8:e66547.
[45] Aricioglu F, Ozkartal CS, Bastaskin T, et al. Antidepressant-like effects induced by chronic blockade of the purinergic 2X7 receptor through inhibition of non-like receptor protein 1 inflammasome in chronic unpredictable mild stress model of depression in rats[J]. Clin Psychopharmacol Neurosci, 2019, 17:261-272.
[46] Hamilton PJ, Chen EY, Tolstikov V, et al. Chronic stress and antidepressant treatment alter purine metabolism and beta oxidation within mouse brain and serum[J]. Sci Rep, 2020, 10:18134.
[47] Liu L, Zhou X, Zhang Y, et al. Hippocampal metabolic differences implicate distinctions between physical and psychological stress in four rat models of depression[J]. Transl Psychiatry, 2018, 8:4.
[48] Umehara H, Numata S, Watanabe SY, et al. Altered KYN/TRP, Gln/Glu, and Met/methionine sulfoxide ratios in the blood plasma of medication-free patients with major depressive disorder[J]. Sci Rep, 2017, 7:4855.
[49] Herken H, Gurel A, Selek S, et al. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression:impact of antidepressant treatment[J]. Arch Med Res, 2007, 38:247-252.
[50] Martorell M, Lucas X, Alarcon-Zapata P, et al. Targeting xanthine oxidase by natural products as a therapeutic approach for mental disorders[J]. Curr Pharm Des, 2021, 27:367-382.
[51] Jiang N, Zhang XL, Tian JY, et al. Recent studies on the natural products with xanthine oxidase inhibitory effect[J]. Acta Pharm Sin (药学学报), 2021. DOI:10.16438/j.0513-4870.2020-1952.
[52] Florio C, Prezioso A, Papaioannou A, et al. Adenosine A1 receptors modulate anxiety in CD1 mice[J]. Psychopharmacology (Berl), 1998, 136:311-319.
[53] Mendonca A, Sebastiao AM, Ribeiro JA. Adenosine:does it have a neuroprotective role after all?[J]. Brain Res Brain Res Rev, 2000, 33:258-274.
[54] Ribeiro JA, Sebastiao AM, Mendonca A. Adenosine receptors in the nervous system:pathophysiological implications[J]. Prog Neurobiol, 2002, 68:377-392.
[55] Haun SE, Segeleon JE, Trapp VL, et al. Inosine mediates the protective effect of adenosine in rat astrocyte cultures subjected to combined glucose-oxygen deprivation[J]. J Neurochem, 1996, 67:2051-2059.
[56] Cipriani S, Bakshi R, Schwarzschild MA. Protection by inosine in a cellular model of Parkinson's disease[J]. Neuroscience, 2014, 274:242-249.
[57] Chen P, Goldberg DE, Kolb B, et al. Inosine induces axonal rewiring and improves behavioral outcome after stroke[J]. Proc Natl Acad Sci U S A, 2002, 99:9031-9036.
[58] Bettio LE, Gil-Mohapel J, Rodrigues AL. Guanosine and its role in neuropathologies[J]. Purinergic Signal, 2016, 12:411-426.
[59] Oleskovicz SP, Martins WC, Leal RB, et al. Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen-glucose deprivation[J]. Neurochem Int, 2008, 52:411-418.
[60] Courtes AA, Carvalho NR, Goncalves DF, et al. Guanosine protects against Ca2+-induced mitochondrial dysfunction in rats[J]. Bioed Pharmacother, 2019, 111:1438-1446.
[61] Kaster MP, Rosa AO, Rosso MM, et al. Adenosine administration produces an antidepressant-like effect in mice:evidence for the involvement of A1 and A2A receptors[J]. Neurosci Lett, 2004, 355:21-24.
[62] Kaster MP, Santos AR, Rodrigues AL. Involvement of 5-HT1A receptors in the antidepressant-like effect of adenosine in the mouse forced swimming test[J]. Brain Res Bull, 2005, 67:53-61.
[63] Kaster MP, Budni J, Santos AR, et al. Pharmacological evidence for the involvement of the opioid system in the antidepressant-like effect of adenosine in the mouse forced swimming test[J]. Eur J Pharmacol, 2007, 576:91-98.
[64] Kaster MP, Machado DG, Santos AR, et al. Involvement of NMDA receptors in the antidepressant-like action of adenosine[J]. Pharmacol Rep, 2012, 64:706-713.
[65] Kaster MP, Budni J, Gazal M, et al. The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A 2A receptors[J]. Purinergic Signal, 2013, 9:481-486.
[66] Muto J, Lee H, Uwaya A, et al. Oral administration of inosine produces antidepressant-like effects in mice[J]. Sci Rep, 2014, 4:4199.
[67] Goncalves FM, Neis VB, Rieger DK, et al. Signaling pathways underlying the antidepressant-like effect of inosine in mice[J]. Purinergic Signal, 2017, 13:203-214.
[68] Goncalves FM, Neis VB, Rieger DK, et al. Glutamatergic system and mTOR-signaling pathway participate in the antidepressant-like effect of inosine in the tail suspension test[J]. J Neural Transm (Vienna), 2017, 124:1227-1237.
[69] Yuan S, Jiang X, Zhou X, et al. Inosine alleviates depression-like behavior and increases the activity of the ERK-CREB signaling in adolescent male rats[J]. Neuroreport, 2018, 29:1223-1229.
[70] Dal-Cim T, Martins WC, Santos AR, et al. Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca2+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake[J]. Neuroscience, 2011, 183:212-220.
[71] Tarozzi A, Merlicco A, Morroni F, et al. Guanosine protects human neuroblastoma cells from oxidative stress and toxicity induced by amyloid-beta peptide oligomers[J]. J Biol Regul Homeost Agents, 2010, 24:297-306.
[72] Eckeli AL, Dach F, Rodrigues AL. Acute treatments with GMP produce antidepressant-like effects in mice[J]. Neuroreport, 2000, 11:1839-1843.
[73] Bettio LE, Cunha MP, Budni J, et al. Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways[J]. Behav Brain Res, 2012, 234:137-148.
[74] Bettio LE, Freitas AE, Neis VB, et al. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress[J]. Pharmacol Biochem Behav, 2014, 127:7-14.
[75] Bettio LE, Gil-Mohapel J, Rodrigues AL. Current perspectives on the antidepressant-like effects of guanosine[J]. Neural Regen Res, 2016, 11:1411-1413.
[76] Rosa PB, Bettio L, Neis VB, et al. The antidepressant-like effect of guanosine is dependent on GSK-3beta inhibition and activation of MAPK/ERK and Nrf2/heme oxygenase-1 signaling pathways[J]. Purinergic Signal, 2019, 15:491-504.
[77] Almeida RF, Pocharski CB, Rodrigues A, et al. Guanosine fast onset antidepressant-like effects in the olfactory bulbectomy mice model[J]. Sci Rep, 2020, 10:8429.
[78] Gelin CF, Bhattacharya A, Letavic MA. P2X7 receptor antagonists for the treatment of systemic inflammatory disorders[J]. Prog Med Chem, 2020, 59:63-99.
[79] Vincenzi F, Ravani A, Pasquini S, et al. Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety[J]. Neuropharmacology, 2016, 111:283-292.
相关文献:
1.刘少博, 令狐婷, 高耀, 田俊生, 秦雪梅.线粒体能量代谢障碍在抑郁症发病机制中的关键作用[J]. 药学学报, 2020,55(2): 195-200
2.王惠芹, 王真真, 陈乃宏.抑郁症发病与受体基因异常研究进展[J]. 药学学报, 2020,55(3): 384-391
3.郑晓珂;毕跃峰;冯卫生;史社坡;王继峰;牛建昭.卷柏化学成分研究卷柏化学成分研究[J]. 药学学报, 2004,39(4): 266-268
4.李绍平;李萍;季晖;张平;董婷霞;詹华强.天然与发酵培养冬虫夏草中核苷类成分的含量及其变化[J]. 药学学报, 2001,36(6): 436-439
5.臧梦维;孟爱民;沈琦;孙越;汪青;刘景生.甲基蓝对阿片类物质产生耐受和依赖的阻断作用[J]. 药学学报, 1999,34(8): 576-581
6.熊杰;黄俊华.对羟吡啶甲基腺苷在大鼠输精管A1与非A1受体作用[J]. 药学学报, 1998,33(3): 175-179
7.陶静仪;阮于平;梅其炳;刘深;田巧莲;陈耀祖;张惠迪;段志兴.当归成分藁本内酯平喘作用的实验研究[J]. 药学学报, 1984,19(8): 561-565