药学学报, 2021, 56(9): 2495-2504
引用本文:
陈小楠, 孙莹莹, 李彭宇, 饶义琴, 于世慧, 胡海燕*. 抗幽门螺杆菌递药策略的研究进展[J]. 药学学报, 2021, 56(9): 2495-2504.
CHEN Xiao-nan, SUN Ying-ying, LI Peng-yu, RAO Yi-qin, YU Shi-hui, HU Hai-yan*. Advances in drug delivery strategies against Helicobacter pylori[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2495-2504.

抗幽门螺杆菌递药策略的研究进展
陈小楠, 孙莹莹, 李彭宇, 饶义琴, 于世慧, 胡海燕*
中山大学药学院, 广东 广州 510006
摘要:
幽门螺杆菌(Helicobacter pyloriH.pylori)可引发多种消化道疾病甚至胃癌。H.pylori全球感染率超过50%,其耐药性持续升高导致根除率不断下降,进而促使大量顽固性感染发生,严重威胁人类健康。目前临床上以增加抗生素联用种类或提高抗生素剂量为主的应对策略难以获得满意的疗效。本文总结了H.pylori的临床治疗方案,分析了H.pylori感染特点及其难根除的原因,重点介绍了提高H.pylori清除率的药物递送策略,如提高胃内药物浓度(胃酸稳定型)、提高药物在H.pylori定植部位的浓度(胃滞留型、H.pylori靶向型)、克服H.pylori耐药性(金属纳米粒、抗生物被膜制剂)及增强宿主免疫应答(疫苗制剂)等。细胞膜仿生和噬菌体等新型递药系统虽然报道较少,但展现了较好的应用前景。本综述为提高H.pylori根除率的治疗策略的开发和应用提供参考与借鉴。
关键词:    幽门螺杆菌      细菌感染      耐药      根除      药物递送系统     
Advances in drug delivery strategies against Helicobacter pylori
CHEN Xiao-nan, SUN Ying-ying, LI Peng-yu, RAO Yi-qin, YU Shi-hui, HU Hai-yan*
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
Abstract:
Helicobacter pylori (H. pylori) can cause a variety of digestive tract diseases, the serious may develop into gastric cancer. Nowadays, H. pylori infection rate exceeds 50%, and its eradication rate is declining due to the continuous increase of drug resistance, leading to the occurrence of plenty of stubborn infections, which seriously threaten human health. At present, it is difficult to achieve satisfactory curative effect by increasing the types of antibiotics combination or increasing their dose. In this review, the clinical treatments of H. pylori were introduced. Proceed from the characteristics and pathological background of H. pylori infection that makes H. pylori difficult to eradicate, the research advances of drug delivery strategies for improving H. pylori eradication rate were reviewed, such as strategies that could increase drug concentration in stomach (e.g. drug delivery systems with gastric acid-stabilized ability), increase drug concentration in H. pylori colonization sites (e.g. drug delivery systems with gastric retention or H. pylori targeted abilities), overcome H. pylori resistance (metal nanoparticles, anti-biofilm delivery systems), enhance host immune response (vaccine preparation) and so on. Novel drug delivery systems, such as cell membrane coating technology and phage therapy, are comparatively rare in the field of anti-H. pylori, but have broad application prospects. This review would provide reference for the development and application of therapeutic strategies to improve H. pylori eradication rate.
Key words:    Helicobacter pylori    bacterial infection    drug resistance    eradication    drug delivery system   
收稿日期: 2021-03-31
DOI: 10.16438/j.0513-4870.2021-0471
基金项目: 国家自然科学基金资助项目(81773659,81973264);广东省基础与应用基础研究基金项目(2019A1515011954,2020A1515010593,2021A1515012621).
通讯作者: 胡海燕,Tel/Fax:86-20-39336119,E-mail:lsshhy@mail.sysu.edu.cn
Email: lsshhy@mail.sysu.edu.cn
相关功能
PDF(713KB) Free
打印本文
0
作者相关文章
陈小楠  在本刊中的所有文章
孙莹莹  在本刊中的所有文章
李彭宇  在本刊中的所有文章
饶义琴  在本刊中的所有文章
于世慧  在本刊中的所有文章
胡海燕*  在本刊中的所有文章

参考文献:
[1] Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis[J]. Lancet, 1983, 1:1273-1275.
[2] Hooi J, Lai WY, Ng WK, et al. Global prevalence of Helicobacter pylori infection:systematic review and meta-analysis[J]. Gastroenterology, 2017, 153:420-429.
[3] Sugano K, Tack J, Kuipers EJ, et al. Kyoto global consensus report on Helicobacter pylori gastritis[J]. Gut, 2015, 64:1353-1367.
[4] Malfertheiner P, Megraud F, O'Morain C, et al. Current concepts in the management of Helicobacter pylori infection——the Maastricht 2-2000 Consensus Report[J]. Aliment Pharmacol Ther, 2002, 16:167-180.
[5] Fallone CA, Chiba N, van Zanten SV, et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults[J]. Gastroenterology, 2016, 151:51-69.
[6] Malfertheiner P, Megraud F, O'Morain CA, et al. Management of Helicobacter pylori infection——the Maastricht V/Florence Consensus Report[J]. Gut, 2017, 66:6-30.
[7] Chey WD, Leontiadis GI, Howden CW, et al. ACG clinical guideline:treatment of Helicobacter pylori infection[J]. Am J Gastroenterol, 2017, 112:212-239.
[8] Liu G, Xie J, Lu ZR, et al. Fifth Chinese national consensus report on the management of Helicobacter pylori infection[J]. Zhonghua Nei Ke Za Zhi (中华内科杂志), 2017, 56:532-545.
[9] Malfertheiner P, Bazzoli F, Delchier JC, et al. Helicobacter pylori eradication with a capsule containing bismuth subcitrate potassium, metronidazole, and tetracycline given with omeprazole versus clarithromycin-based triple therapy:a randomised, open-label, non-inferiority, phase 3 trial[J]. Lancet, 2011, 377:905-913.
[10] Suerbaum S, Smith JM, Bapumia K, et al. Free recombination within Helicobacter pylori[J]. Proc Natl Acad Sci U S A, 1998, 95:12619-12624.
[11] Stark RM, Gerwig GJ, Pitman RS, et al. Biofilm formation by Helicobacter pylori[J]. Lett Appl Microbiol, 1999, 28:121-126.
[12] Yonezawa H, Osaki T, Hanawa T, et al. Impact of Helicobacter pylori biofilm formation on clarithromycin susceptibility and generation of resistance mutations[J]. PLoS One, 2013, 8:e73301.
[13] Chen X, Shen Y, Li P, et al. Bacterial biofilms:characteristics and combat strategies[J]. Acta Pharm Sin (药学学报), 2018, 53:2040-2049.
[14] Su YR, Yu SH, Chao AC, et al. Preparation and properties of pH-responsive, self-assembled colloidal nanoparticles from guanidine-containing polypeptide and chitosan for antibiotic delivery[J]. Colloid Surface A, 2016, 494:9-20.
[15] Thamphiwatana S, Fu V, Zhu J, et al. Nanoparticle-stabilized liposomes for pH-responsive gastric drug delivery[J]. Langmuir, 2013, 29:12228-12233.
[16] Li J, Angsantikul P, Liu W, et al. Micromotors spontaneously neutralize gastric acid for pH-responsive payload release[J]. Angew Chem Int Ed Engl, 2017, 56:2156-2161.
[17] de Avila BE, Angsantikul P, Li J, et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection[J]. Nat Commun, 2017, 8:272.
[18] Esteban-Fernandez DAB, Lopez-Ramirez MA, Mundaca-Uribe R, et al. Multicompartment tubular micromotors toward enhanced localized active delivery[J]. Adv Mater, 2020, 32:e2000091.
[19] Tan Z, Liu W, Liu H, et al. Oral Helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection[J]. Eur J Pharm Biopharm, 2017, 111:33-43.
[20] Liu H, Liu W, Tan Z, et al. Promoting immune efficacy of the oral Helicobacter pylori vaccine by HP55/PBCA nanoparticles against the gastrointestinal environment[J]. Mol Pharm, 2018, 15:3177-3186.
[21] Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery:design, evaluation and state-of-the-art[J]. J Control Release, 2016, 240:504-526.
[22] Arangoa MA, Ponchel G, Orecchioni AM, et al. Bioadhesive potential of gliadin nanoparticulate systems[J]. Eur J Pharm Sci, 2000, 11:333-341.
[23] Rajput P, Singh D, Pathak K. Bifunctional capsular dosage form:novel fanicular cylindrical gastroretentive system of clarithromycin and immediate release granules of ranitidine HCl for simultaneous delivery[J]. Int J Pharm, 2014, 461:310-321.
[24] Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues[J]. Adv Drug Deliv Rev, 2009, 61:158-171.
[25] Zhang Y, Li H, Wang Q, et al. Rationally designed self-assembling nanoparticles to overcome mucus and epithelium transport barriers for oral vaccines against Helicobacter pylori[J]. Adv Funct Mater, 2018, 28:1802671-1802675.
[26] Li P, Chen X, Shen Y, et al. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm[J]. J Control Release, 2019, 300:52-63.
[27] Yang SJ, Huang CH, Yang JC, et al. Residence time-extended nanoparticles by magnetic field improve the eradication efficiency of Helicobacter pylori[J]. ACS Appl Mater Interfaces, 2020, 12:54316-54327.
[28] Walker D, Kaesdorf BT, Jeong H, et al. Enzymatically active biomimetic micropropellers for the penetration of mucin gels[J]. Sci Adv, 2015, 1:e1500501.
[29] Luo M, Jia YY, Jing ZW, et al. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori[J]. Colloids Surf B Biointerfaces, 2018, 164:11-19.
[30] Cong Y, Geng J, Wang H, et al. Ureido-modified carboxymethyl chitosan-graft-stearic acid polymeric nano-micelles as a targeted delivering carrier of clarithromycin for Helicobacter pylori:preparation and in vitro evaluation[J]. Int J Biol Macromol, 2019, 129:686-692.
[31] Han J, Sun Y, Hou J, et al. Preliminary investigations into surface molecularly imprinted nanoparticles for Helicobacter pylori eradication[J]. Acta Pharm Sin B, 2015, 5:577-582.
[32] Wu Z, Hou J, Wang Y, et al. Preparation and evaluation of amoxicillin loaded dual molecularly imprinted nanoparticles for anti-Helicobacter pylori therapy[J]. Int J Pharm, 2015, 496:1006-1014.
[33] Zaidi S, Misba L, Khan AU. Nano-therapeutics:a revolution in infection control in post antibiotic era[J]. Nanomedicine, 2017, 13:2281-2301.
[34] Amin M, Anwar F, Janjua MR, et al. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract:characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori[J]. Int J Mol Sci, 2012, 13:9923-9941.
[35] Chakraborti S, Bhattacharya S, Chowdhury R, et al. The molecular basis of inactivation of metronidazole-resistant Helicobacter pylori using polyethyleneimine functionalized zinc oxide nanoparticles[J]. PLoS One, 2013, 8:e70776.
[36] Wu T, Wang L, Gong M, et al. Synergistic effects of nanoparticle heating and amoxicillin on H. Pylori inhibition[J]. J Magn Magn Mater, 2019, 485:95-104.
[37] Bugli F, Palmieri V, Torelli R, et al. In vitro effect of clarithromycin and alginate lyase against Helicobacter pylori biofilm[J]. Biotechnol Prog, 2016, 32:1584-1591.
[38] Gurunathan S, Jeong JK, Han JW, et al. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells[J]. Nanoscale Res Lett, 2015, 10:35.
[39] Gopalakrishnan V, Masanam E, Ramkumar VS, et al. Influence of N-acylhomoserine lactonase silver nanoparticles on the quorum sensing system of Helicobacter pylori:a potential strategy to combat biofilm formation[J]. J Basic Microbiol, 2020, 60:207-215.
[40] Cai J, Huang H, Song W, et al. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro[J]. Int J Pharm, 2015, 495:728-737.
[41] Shen Y, Zou Y, Chen X, et al. Antibacterial self-assembled nanodrugs composed of berberine derivatives and rhamnolipids against Helicobacter pylori[J]. J Control Release, 2020, 328:575-586.
[42] Yang WC, Sun HW, Sun HQ, et al. Intranasal immunization with immunodominant epitope peptides derived from HpaA conjugated with CpG adjuvant protected mice against Helicobacter pylori infection[J]. Vaccine, 2018, 36:6301-6306.
[43] Yang Y, Chen L, Sun HW, et al. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori[J]. J Nanobiotechnology, 2019, 17:6.
[44] Chen F, Zhang ZR, Yuan F, et al. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery[J]. Int J Pharm, 2008, 349:226-233.
[45] Kim SY, Doh HJ, Jang MH, et al. Oral immunization with Helicobacter pylori-loaded poly(D,L-lactide-co-glycolide) nanoparticles[J]. Helicobacter, 1999, 4:33-39.
[46] Corthesy B, Boris S, Isler P, et al. Oral immunization of mice with lactic acid bacteria producing Helicobacter pylori urease B subunit partially protects against challenge with Helicobacter felis[J]. J Infect Dis, 2005, 192:1441-1449.
[47] Zhang R, Wang C, Cheng W, et al. Delivery of Helicobacter pylori HpaA to gastrointestinal mucosal immune sites using Lactococcus lactis and its immune efficacy in mice[J]. Biotechnol Lett, 2018, 40:585-590.
[48] Angsantikul P, Thamphiwatana S, Zhang Q, et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection[J]. Adv Ther (Weinh), 2018, 1:1800016.
[49] Zhang Y, Chen Y, Lo C, et al. Inhibition of pathogen adhesion by bacterial outer membrane-coated nanoparticles[J]. Angew Chem Int Ed Engl, 2019, 58:11404-11408.
[50] Cao J, Sun Y, Berglindh T, et al. Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth[J]. Biochim Biophys Acta, 2000, 1474:107-113.
[51] Lu H, Zhang D, Huang H. Recent advances in study of drugs against Gram-negative pathogens[J]. Acta Pharm Sin (药学学报), 2019, 54:1554-1563.