药学学报, 2021, 56(9): 2505-2512
引用本文:
刘金虎, 刘永军*, 张娜*. 基于巨噬细胞的纳米仿生递药系统在肿瘤治疗中的应用[J]. 药学学报, 2021, 56(9): 2505-2512.
LIU Jin-hu, LIU Yong-jun*, ZHANG Na*. Application of nano-bionic drug delivery system based on macrophages in tumor therapy[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2505-2512.

基于巨噬细胞的纳米仿生递药系统在肿瘤治疗中的应用
刘金虎, 刘永军*, 张娜*
山东大学药学院, 天然产物化学生物学教育部重点实验室, 山东 济南 250012
摘要:
利用细胞及细胞成分构建纳米仿生递药系统是目前新型药物递送系统的研究热点。该纳米仿生递药系统可整合纳米载体高载药量、可控释药和细胞仿生成分良好生物相容性、低免疫原性、天然靶向性及活细胞形态灵活特征。其中,巨噬细胞因其吞噬功能、固有趋向性、深层渗透能力及在细胞治疗中的潜力,基于巨噬细胞的纳米仿生递药系统在肿瘤治疗方面展现出良好临床应用前景。基于此,本综述基于巨噬细胞的纳米仿生递药系统载药策略及其在肿瘤治疗中的应用,以期为新型递药系统的研发提供参考。
关键词:    巨噬细胞      纳米载体      纳米仿生递药系统      肿瘤治疗      细胞治疗     
Application of nano-bionic drug delivery system based on macrophages in tumor therapy
LIU Jin-hu, LIU Yong-jun*, ZHANG Na*
Key Laboratory of Chemical Biology(Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
Abstract:
The construction of nano-bionic drug delivery system based on cells or cellular components is a research hotspot of novel drug delivery systems at present. The nano-bionic drug delivery system can integrate the characteristics not only high drug loading and controlled release of nano-carriers, but also good biocompatibility, low immunogenicity and natural targeting from bionic components of cell, and it can also integrate with flexible morphology from living cells. Among them, nano-bionic drug delivery system based on macrophages possesses a good prospect of clinical application because of phagocytic function, inherent tendency, deep penetration ability and potential in cell therapy of macrophages in the treatment of tumors. Based on this, this paper reviews the drug loading strategies of nano-bionic drug delivery system based on macrophages and its application in tumor therapy, so as to provide reference for the development of novel drug delivery systems.
Key words:    macrophage    nano-carrier    nano-bionic drug delivery system    tumor therapy    cell therapy   
收稿日期: 2021-04-30
DOI: 10.16438/j.0513-4870.2021-0669
基金项目: 国家自然科学基金资助项目(81974498);山东大学青年学者未来计划资助项目(2017WLJH40).
通讯作者: 张娜,Tel:86-531-88382589,Fax:86-531-88382548,E-mail:zhangnancy9@sdu.edu.cn;刘永军,E-mail:liuyongjun@sdu.edu.cn
Email: zhangnancy9@sdu.edu.cn;liuyongjun@sdu.edu.cn
相关功能
PDF(564KB) Free
打印本文
0
作者相关文章
刘金虎  在本刊中的所有文章
刘永军*  在本刊中的所有文章
张娜*  在本刊中的所有文章

参考文献:
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68:394-424.
[2] Li WS, Su ZG, Hao MX, et al. Cytopharmaceuticals:an emerging paradigm for drug delivery[J]. J Control Release, 2020, 328:313-324.
[3] Lai XX, Wang S, Yan XY, et al. Strategies and reflections on platelet-based targeted therapy for tumor[J]. Acta Pharm Sin (药学学报), 2021, 56:1025-1034.
[4] Franken L, Schiwon M, Kurts C. Macrophages:sentinels and regulators of the immune system[J]. Cell Microbiol, 2016, 18:475-487.
[5] Evans MA, Shields ICW, Krishnan V, et al. Macrophage-mediated delivery of hypoxia-activated prodrug nanoparticles[J]. Adv Therap, 2019, 3:1900162.
[6] Liu LQ, Wang Y, Guo X, et al. A biomimetic polymer magnetic nanocarrier polarizing tumor-associated macrophages for potentiating immunotherapy[J]. Small, 2020, 16:2003543.
[7] Klichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy[J]. Nat Biotechnol, 2020, 38:947-953.
[8] Zhang L, Tian L, Dai XY, et al. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions[J]. J Hematol Oncol, 2020, 13:153.
[9] Zhang WZ, Wang MZ, Tang W, et al. Nanoparticle-laden macrophages for tumor-tropic drug delivery[J]. Adv Mater, 2018, 30:1805557.
[10] Rayamajhi S, Nguyen TDT, Marasini R, et al. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery[J]. Acta Biomater, 2019, 94:482-494.
[11] Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages[J]. J Drug Deliv, 2011, 2011:727241.
[12] Nair M, Jayant RD, Kaushik A, et al. Getting into the brain:potential of nanotechnology in the management of neuro AIDS[J]. Adv Drug Deliv Rev, 2016, 103:202-217.
[13] Gustafson HH, Holt Casper D, Grainger DW, et al. Nanoparticle uptake:the phagocyte problem[J]. Nano Today, 2015, 10:487-510.
[14] Garapaty A, Champion JA. Tunable particles alter macrophage uptake based on combinatorial effects of physical properties[J]. Bioeng Transl Med, 2017, 2:92-101.
[15] Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics[J]. Adv Drug Deliv Rev, 2017, 114:206-221.
[16] Patel S, Kim J, Herrera M, et al. Brief update on endocytosis of nanomedicines[J]. Adv Drug Deliv Rev, 2019, 144:90-111.
[17] Qiu Y, Ren KB, Zhao W, et al. A "dual-guide" bioinspired drug delivery strategy of a macrophage-based carrier against postoperative triple-negative breast cancer recurrence[J]. J Control Release, 2021, 329:191-204.
[18] Zhou H, He H, Liang R, et al. In situ poly I:C released from living cell drug nanocarriers for macrophage-mediated antitumor immunotherapy[J]. Biomaterials, 2021, 269:120670.
[19] Cao HQ, Wang H, He XY, et al. Bioengineered macrophages can responsively transform into nanovesicles to target lung metastasis[J]. Nano Lett, 2018, 18:4762-4770.
[20] Franco S, Noureddine A, Guo JM, et al. Direct transfer of mesoporous silica nanoparticles between macrophages and cancer cells[J]. Cancers, 2020, 12:2892.
[21] Zheng LY, Hu XX, Wu H, et al. In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy[J]. J Am Chem Soc, 2020, 142:382-391.
[22] Facklam AL, Volpatti LR, Anderson DG. Biomaterials for personalized cell therapy[J]. Adv Mater, 2019, 32:1902005.
[23] An L, Wan YY, Lin JM, et al. Macrophages-mediated delivery of small gold nanorods for tumor hypoxia photoacoustic imaging and enhanced photothermal therapy[J]. ACS Appl Mater Interfaces, 2019, 11:15251-15261.
[24] Kang SH, Lee YK, Park IS, et al. Biomimetic gold nanoshell-loaded macrophage for photothermal biomedicine[J]. Biomed Res Int, 2020, 2020:5869235.
[25] Xu JJ, Zheng BB, Zhang SH, et al. Copper sulfide nanoparticle-redirected macrophages for adoptive transfer therapy of melanoma[J]. Adv Funct Mater, 2021. DOI:10.1002/adfm.202008022.
[26] Hou T, Wang TQ, Mu WW, et al. Nanoparticle-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy[J]. Nano Micro Lett, 2021, 13:6.
[27] Lee S, Kivimäe S, Dolor A, et al. Macrophage-based cell therapies:the long and winding road[J]. J Control Release, 2016, 240:527-540.
[28] Guo L, Zhang Y, Yang ZP, et al. Tunneling nanotubular expressways for ultrafast and accurate M1 macrophage delivery of anticancer drugs to metastatic ovarian carcinoma[J]. ACS Nano, 2019, 13:1078-1096.
[29] Li SW, Feng S, Ding L, et al. Nanomedicine engulfed by macrophages for targeted tumor therapy[J]. Int J Nanomedicine, 2016, 11:4107-4124.
[30] Yang Y, Zeng WW, Huang P, et al. Smart materials for drug delivery and cancer therapy[J]. VIEW, 2020. DOI:10.1002/VIW. 20200042.
[31] Xu ZL, Liu HM, Tian H, et al. Real-time imaging tracking of engineered macrophages as ultrasound-triggered cell bombs for cancer treatment[J]. Adv Funct Mater, 2020, 30:1910304.
[32] Liu Y, Luo JS, Chen XJ, et al. Cell membrane coating technology:a promising strategy for biomedical applications[J]. Nano Micro Lett, 2019, 11:100.
[33] Zhai YH, Su JH, Ran W, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy[J]. Theranostics, 2017, 7:2575-2592.
[34] Seaberg J, Montazerian H, Hossen MN, et al. Hybrid nanosystems for biomedical applications[J]. ACS Nano, 2021, 15:2099-2142.
[35] Rao L, Cai B, Bu LL, et al. Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy[J]. ACS Nano, 2017, 11:3496-3505.
[36] Zhang X, Li W, Sun J, et al. How to use macrophages to realize the treatment of tumor[J]. J Drug Target, 2020, 28:1034-1045.
[37] Xuan MJ, Shao JX, Dai LR, et al. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy[J]. ACS Appl Mater Interfaces, 2016, 8:9610-9618.
[38] Zhao HJ, Li L, Zhang JL, et al. CCL2 recruits macrophage membrane camouflaged hollow bismuth selenide nanoparticles to facilitate photothermal-sensitivity and inhibit lung metastasis of breast cancer[J]. ACS Appl Mater Interfaces, 2018, 10:31124-31135.
[39] Lai JZ, Deng GJ, Sun ZH, et al. Scaffolds biomimicking macrophages for a glioblastoma NIR-Ib imaging guided photothermal therapeutic strategy by crossing Blood-Brain Barrier[J]. Biomaterials, 2019, 211:48-56.
[40] Liu R, An Y, Jia WF, et al. Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer[J]. J Control Release, 2020, 321:589-601.
[41] Gong CA, Yu XY, You BM, et al. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy[J]. J Nanobiotechnol, 2020, 18:92.
[42] Rayamajhi S, Marasini R, Nguyen TDT, et al. Strategic reconstruction of macrophage-derived extracellular vesicles as a magnetic resonance imaging contrast agent[J]. Biomater Sci, 2020, 8:2887-2904.
[43] Ye SJ, Hu KL. Research progress of exosomes as drug delivery systems in the treatment of brain diseases[J]. Acta Pharm Sin (药学学报), 2020, 55:1540-1548.
[44] Liang YJ, Duan L, Lu JP, et al. Engineering exosomes for targeted drug delivery[J]. Theranostics, 2021, 11:3183-3195.
[45] Silva AKA, Kolosnjaj Tabi J, Bonneau S, et al. Magnetic and photoresponsive theranosomes:translating cell-released vesicles into smart nanovectors for cancer therapy[J]. ACS Nano, 2013, 7:4954-4966.
[46] Wu PP, Zhang B, Ocansey DKW, et al. Extracellular vesicles:a bright star of nanomedicine[J]. Biomaterials, 2021, 269:120467.
[47] Xiong F, Ling X, Chen X, et al. Pursuing specific chemotherapy of orthotopic breast cancer with lung metastasis from docking nanoparticles driven by bioinspired exosomes[J]. Nano Lett, 2019, 19:3256-3266.
[48] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30:255-289.
[49] Ibrahim A, Marbán E. Exosomes:fundamental biology and roles in cardiovascular physiology[J]. Annu Rev Physiol, 2016, 78:67-83.
[50] Kim MS, Haney MJ, Zhao YL, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases:in vitro and in vivo evaluations[J]. Nanomed Nanotechnol Biol Med, 2018, 14:195-204.
[51] Cheng LF, Wang YH, Huang L. Exosomes from M1-polarized macrophages potentiate the cancer vaccine by creating a pro-inflammatory microenvironment in the lymph node[J]. Mol Ther, 2017, 25:1665-1675.
[52] Guo L, Zhang Y, Wei RX, et al. Proinflammatory macrophage-derived microvesicles exhibit tumor tropism dependent on CCL2/CCR2 signaling axis and promote drug delivery via SNARE-mediated membrane fusion[J]. Theranostics, 2020, 10:6581-6598.
[53] Xu Z, Huang HB, Xiong X, et al. A near-infrared light-responsive extracellular vesicle as a "Trojan horse" for tumor deep penetration and imaging-guided therapy[J]. Biomaterials, 2021, 269:120647.
[54] Shields Iv CW, Evans MA, Wang LW, et al. Cellular backpacks for macrophage immunotherapy[J]. Sci Adv, 2020, 6:z6579.
[55] Li CX, Zhang Y, Dong X, et al. Artificially reprogrammed macrophages as tumor-tropic immunosuppression-resistant biologics to realize therapeutics production and immune activation[J]. Adv Mater, 2019, 31:1807211.
[56] Xia Y, Rao L, Yao HM, et al. Engineering macrophages for cancer immunotherapy and drug delivery[J]. Adv Mater, 2020, 32:2002054.
[57] Qian BZ, Li JF, Zhang H, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis[J]. Nature, 2011, 475:222-225.
[58] Bonapace L, Coissieux MM, Wyckoff J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis[J]. Nature, 2014, 515:130-133.
相关文献:
1.胥海婷, 吴亿晗, 石金凤, 李佳鑫, 章津铭, 傅超美.基于纳米共载策略的光热治疗联合化疗抗肿瘤研究进展[J]. 药学学报, 2020,55(8): 1774-1783
2.陈伟光, 王士斌.纳米载体共载基因与化疗药物用于癌症治疗的研究进展[J]. 药学学报, 2013,48(7): 1091-1098