药学学报, 2021, 56(9): 2544-2552
引用本文:
李宏丽, 孙惠惠, 刘汉滢, 季青璇, 田婧鋆, 宋星卓, 王析瑞, 蒋坤秀, 韩静. 骆驼蓬抑制高糖诱导的内皮细胞管道形成的作用机制研究[J]. 药学学报, 2021, 56(9): 2544-2552.
LI Hong-li, SUN Hui-hui, LIU Han-ying, JI Qing-xuan, TIAN Jing-yun, SONG Xing-zhuo, WANG Xi-rui, JIANG Kun-xiu, HAN Jing. The mechanism by which Peganum harmala L. inhibits high glucose-induced tube formation in endothelial cells[J]. Acta Pharmaceutica Sinica, 2021, 56(9): 2544-2552.

骆驼蓬抑制高糖诱导的内皮细胞管道形成的作用机制研究
李宏丽1, 孙惠惠1, 刘汉滢1, 季青璇1, 田婧鋆2, 宋星卓2, 王析瑞2, 蒋坤秀2, 韩静3*
1. 北京中医药大学中医学院, 北京 100029;
2. 北京中医药大学中药学院, 北京 100029;
3. 北京中医药大学中医药研究院, 北京 100029
摘要:
探讨骆驼蓬对高糖诱导的视网膜血管内皮细胞管道形成的调节作用及其机制。建立高糖诱导的视网膜血管内皮细胞模型,将细胞分为:正常组(葡萄糖浓度为5.5 mmol·L-1)、模型组(葡萄糖浓度为25 mmol·L-1)、骆驼蓬给药高、低剂量组(葡萄糖浓度为25 mmol·L-1+不同剂量骆驼蓬)。内皮管道形成方法观察细胞管道形成状态。网络药理学方法筛选骆驼蓬治疗糖尿病视网膜病变的药效成分、靶点和通路。Real-time PCR法验证骆驼蓬治疗糖尿病视网膜病变相关靶点的mRNA表达水平。内皮管道形成实验结果显示,与正常组相比,模型组内皮细胞管道形成总长度显著增加;与模型组相比,骆驼蓬组内皮管道形成总长度显著减少。网络药理学结果提示,骆驼蓬的作用靶点是细胞外调节蛋白激酶2(extracellular signal-regulated kinase 2,ERK2)、丝氨酸苏氨酸蛋白激酶1(serine/threonine-protein kinase 1,AKT1)、磷脂酰肌醇3-激酶催化亚基α(phosphoinositide 3 kinase catalytic alpha polypeptide,PIK3CA)等;信号通路涉及血管内皮生长因子(vascular endothelial growth factor,VEGF)信号通路和丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路等。Real-time PCR结果显示,与正常组相比,模型组ERK2、PIK3CA和AKT1的mRNA表达水平均升高;与模型组相比,骆驼蓬组ERK2、PIK3CA和AKT1的mRNA表达水平均降低。骆驼蓬可能通过调节MAPK信号通路和VEGF信号通路等抑制高糖条件下视网膜血管内皮细胞管道的形成,证实了它多靶点、多通路的作用特点。此研究为骆驼蓬治疗糖尿病视网膜病奠定了工作基础。
关键词:    骆驼蓬      糖尿病视网膜病      视网膜血管内皮细胞      管道形成      网络药理学     
The mechanism by which Peganum harmala L. inhibits high glucose-induced tube formation in endothelial cells
LI Hong-li1, SUN Hui-hui1, LIU Han-ying1, JI Qing-xuan1, TIAN Jing-yun2, SONG Xing-zhuo2, WANG Xi-rui2, JIANG Kun-xiu2, HAN Jing3*
1. School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
2. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China;
3. Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
Abstract:
The study investigates the mechanism by which Peganum harmala L. (Luotuopeng, LTP) inhibits tube formation in retinal vascular endothelial cells. Tube formation was induced by treatment of retinal vascular endothelial cells with glucose. The cells were divided into a normal group, model group, and an LTP group. The total length of tube formation was measured. The active components, targets, and pathway by which LTP acts in the treatment of diabetic retinopathy was explored by network pharmacology. The mRNA expression levels of targets[extracellular signal-regulated kinase 2 (ERK2), phosphoinositide 3 kinase catalytic alpha polypeptide (PIK3CA), serine/threonine-protein kinase 1 (AKT1)] related to the mitogen-activated protein kinase (MAPK) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway was measured by real-time PCR. The results of tube formation indicated that compared with the normal group, the total tube length increased in the model group (P < 0.01); after the treatment with LTP, the total tube length decreased compared with the model group (P < 0.01). Network pharmacology revealed that the targets of LTP included PIK3CA, AKT1, and ERK2, and the pathways involved the MAPK signaling pathway and the VEGF signaling pathway. Real-time PCR indicated that compared with the normal group, the mRNA expression levels of ERK2, PIK3CA and AKT1 were elevated in the model group (P < 0.05); after treatment with LTP, the mRNA expression levels of ERK2, PIK3CA and AKT1 decreased compared with the model group (P < 0.05). LTP may inhibit retinal vascular endothelial cell tube formation by regulating the MAPK signaling pathway and the VEGF signaling pathway. This study confirms the multi-targets and multi-pathways of LTP and provides a basis for its use in the treatment of diabetic retinopathy.
Key words:    Peganum harmala L.    diabetic retinopathy    retinal vascular endothelial cell    tube formation    network pharmacology   
收稿日期: 2021-02-04
DOI: 10.16438/j.0513-4870.2021-0194
基金项目: 国家自然科学基金资助项目(81873165,82074238).
通讯作者: 韩静,Tel/Fax:86-10-64286404,E-mail:hanjing8585@163.com
Email: hanjing8585@163.com
相关功能
PDF(923KB) Free
打印本文
0
作者相关文章
李宏丽  在本刊中的所有文章
孙惠惠  在本刊中的所有文章
刘汉滢  在本刊中的所有文章
季青璇  在本刊中的所有文章
田婧鋆  在本刊中的所有文章
宋星卓  在本刊中的所有文章
王析瑞  在本刊中的所有文章
蒋坤秀  在本刊中的所有文章
韩静  在本刊中的所有文章

参考文献:
[1] Mendonca HR, Carpi-Santos R, da Costa Calaza K, et al. Neuroinflammation and oxidative stress act in concert to promote neurodegeneration in the diabetic retina and optic nerve:galectin-3 participation[J]. Neural Regen Res, 2020, 15:625-635.
[2] Rübsam A, Parikh S, Fort PE. Role of inflammation in diabetic retinopathy[J]. Int J Mol Sci, 2018, 19:942.
[3] Mansour SE, Browning DJ, Wong K, et al. The evolving treatment of diabetic retinopathy[J]. Clin Ophthalmol, 2020, 14:653-678.
[4] Moloudizargari M, Mikaili P, Aghajanshakeri S, et al. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids[J]. Pharmacogn Rev, 2013, 7:199-212.
[5] Singh AB, Chaturvedi JP, Narender T, et al. Preliminary studies on the hypoglycemic effect of Peganum harmala L. seeds ethanol extract on normal and streptozotocin induced diabetic rats[J]. Indian J Clin Biochem, 2008, 23:391-393.
[6] Komeili G, Hashemi M, Bameri-Niafar M. Evaluation of antidiabetic and antihyperlipidemic effects of Peganum harmala seeds in diabetic rats[J]. Cholesterol, 2016, 2016:7389864.
[7] Abedi Gaballu F, Abedi Gaballu Y, Moazenzade Khyavy O, et al. Effects of a triplex mixture of Peganum harmala, Rhus coriaria, and Urtica dioica aqueous extracts on metabolic and histological parameters in diabetic rats[J]. Pharm Biol, 2015, 53:1104-1109.
[8] Wang ZL, Song YL, Xing W, et al. Effects and mechanism of Luotuopeng's aqueous extract on the high glucose induced-retinal vascular endothelial cells[J]. J Beijing Univ Tradit Chin Med (北京中医药大学学报), 2018, 41:738-743.
[9] Song YL, Wang ZL, Xing W, et al. Pharmacological mechanism of Compound Xueshuantong in treatment of diabetic retinopathy based on network pharmacology[J]. Acta Pharm Sin (药学学报), 2018, 53:1442-1448.
[10] Hao DC, Xiao PG. Network pharmacology:a Rosetta Stone for traditional Chinese medicine[J]. Drug Dev Res, 2014, 75:299-312.
[11] Zhang Y, Li X, Xu X, et al. Mechanisms of Paeonia lactiflora in treatment of ulcerative colitis:a network pharmacological study[J]. Med Sci Monit, 2019, 25:7574-7580.
[12] Yu G, Zhang Y, Ren W, et al. Network pharmacology-based identification of key pharmacological pathways of Yin-Huang-Qing-Fei capsule acting on chronic bronchitis[J]. Int J Chron Obstruct Pulmon Dis, 2016, 12:85-94.
[13] Zhang G, Jiang X, Liu Y, et al. Therapeutic efficiency of an external Chinese herbal formula of mammary precancerous lesions by BATMAN-TCM online bioinformatics analysis tool and experimental validation[J]. Evid Based Complement Alternat Med, 2019, 2019:2795010.
[14] Cao L, Song Y, Wu Y, et al. Effects of ginsenoside Rg3 on human retinal capillary endothelial cells cultured in normal and high glucose conditions[J]. Int Eye Sci (国际眼科杂志), 2013, 13:1965-1969.
[15] Zhou M, Song X, Huang Y, et al. Wogonin inhibits H2O2-induced angiogenesis via suppressing PI3K/Akt/NF-κB signaling pathway[J]. Vascul Pharmacol, 2014, 60:110-119.
[16] Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis[J]. Front Mol Neurosci, 2011, 4:51.
[17] Ye X, Xu G, Chang Q, et al. ERK1/2 signaling pathways involved in VEGF release in diabetic rat retina[J]. Invest Ophthalmol Vis Sci, 2010, 51:5226-5233.
[18] Hoshi S, Nomoto K, Kuromitsu J, et al. High glucose induced VEGF expression via PKC and ERK in glomerular podocytes[J]. Biochem Biophys Res Commun, 2002, 290:177-184.
[19] Muñoz-Chápuli R, Quesada AR, Angel Medina M. Angiogenesis and signal transduction in endothelial cells[J]. Cell Mol Life Sci, 2004, 61:2224-2243.
[20] Ojima T, Takagi H, Suzuma K, et al. Ephrin A1 inhibits vascular endothelial growth factor-induced intracellular signaling and suppresses retinal neovascularization and blood-retinal barrier breakdown[J]. Am J Pathol, 2006, 168:331-339.
[21] Bullard LE, Qi X, Penn JS. Role for extracellular signal-responsive kinase-1 and -2 in retinal angiogenesis[J]. Invest Ophthalmol Vis Sci, 2003, 44:1722-1731.
[22] Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis[J]. J Intern Med, 2013, 273:114-127.
[23] Fish JE, Cantu Gutierrez M, Dang LT, et al. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network[J]. Development, 2017, 144:2428-2444.
[24] Abekhoukh S, Planque C, Ripoll C, et al. Dyrk1A, a serine/threonine kinase, is involved in ERK and Akt activation in the brain of hyperhomocysteinemic mice[J]. Mol Neurobiol, 2013, 47:105-116.
[25] Tan B, Li Y, Zhao Q, et al. The impact of harmine hydrochloride on growth, apoptosis and migration, invasion of gastric cancer cells[J]. Pathol Res Pract, 2020, 216:152995.
[26] Fan Y, Patima A, Chen Y, et al. Cytotoxic effects of β-carboline alkaloids on human gastric cancer SGC-7901 cells[J]. Int J Clin Exp Med, 2015, 8:12977-12982.
[27] Cui G, Shu B, Veeran S, et al. Natural β-carboline alkaloids regulate the PI3K/Akt/mTOR pathway and induce autophagy in insect Sf9 cells[J]. Pestic Biochem Physiol, 2019, 154:67-77.
[28] Waki H, Park KW, Mitro N. The small molecule harmine is an antidiabetic cell-type-specific regulator of PPARγ expression[J]. Cell Metabolism, 2007, 5:357-370.
[29] Liu P, Li H, Wang Y, et al. Harmine ameliorates cognitive impairment by inhibiting NLRP3 inflammasome activation and enhancing the BDNF/TrkB signaling pathway in STZ-induced diabetic rats[J]. Front Pharmacol, 2020, 11:535.
[30] Dai FJ. Study on the Effect and Mechanism of Small Molecules in Angiogenesis Related Diseases (小分子化合物在血管新生相关疾病中的功能与机理研究)[D]. Shanghai:East China Normal University, 2014.
[31] Cai HR, Huang X, Zhang XR. Harmine suppresses bladder tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis[J]. Biosci Rep, 2019, 39:BSR20190155.
[32] Shen J, Wang B, Zhang T, et al. Suppression of non-small cell lung cancer growth and metastasis by a novel small molecular activator of RECK[J]. Cell Physiol Biochem, 2018, 45:1807-1817.
[33] Dai F, Chen Y, Song Y, et al. A natural small molecule harmine inhibits angiogenesis and suppresses tumour growth through activation of p53 in endothelial cells[J]. PLoS One, 2012, 7:e52162.
相关文献:
1.宋勇丽, 王政霖, 邢玮, 吴晏, 王伟, 韩静.基于网络药理学的复方血栓通治疗糖尿病视网膜病的药理机制研究[J]. 药学学报, 2018,53(9): 1442-1448